## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ## ----init_steps, eval=TRUE---------------------------------------------------- suppressPackageStartupMessages(library(pathfindR)) data(example_pathfindR_input) head(example_pathfindR_input, 3) ## ----process------------------------------------------------------------------ # example_processed <- input_processing( # input = example_pathfindR_input, # the input: in this case, differential expression results # p_val_threshold = 0.05, # p value threshold to filter significant genes # pin_name_path = "Biogrid", # the name of the PIN to use for active subnetwork search # convert2alias = TRUE # boolean indicating whether or not to convert missing symbols to alias symbols in the PIN # ) ## ----gene_set----------------------------------------------------------------- # # using "BioCarta" as our gene sets for enrichment # biocarta_list <- fetch_gene_set( # gene_sets = "BioCarta", # min_gset_size = 10, # max_gset_size = 300 # ) # biocarta_gsets <- biocarta_list[[1]] # biocarta_descriptions <- biocarta_list[[2]] ## ----snw_search--------------------------------------------------------------- # n_iter <- 10 ## number of iterations # combined_res <- NULL ## to store the result of each iteration # # for (i in 1:n_iter) { # ###### Active Subnetwork Search # snws_file <- paste0("active_snws_", i) # Name of output file # active_snws <- active_snw_search( # input_for_search = example_processed, # pin_name_path = "Biogrid", # snws_file = snws_file, # score_quan_thr = 0.8, # you may tweak these arguments for optimal filtering of subnetworks # sig_gene_thr = 0.02, # you may tweak these arguments for optimal filtering of subnetworks # search_method = "GR", # we suggest using GR # seedForRandom = i # setting seed to ensure reproducibility per iteration # ) # # ###### Enrichment Analyses # current_res <- enrichment_analyses( # snws = active_snws, # sig_genes_vec = example_processed$GENE, # pin_name_path = "Biogrid", # genes_by_term = biocarta_gsets, # term_descriptions = biocarta_descriptions, # adj_method = "bonferroni", # enrichment_threshold = 0.05, # list_active_snw_genes = TRUE # ) # listing the non-input active snw genes in output # # ###### Combine results via `rbind` # combined_res <- rbind(combined_res, current_res) # } ## ----post_proc---------------------------------------------------------------- # ###### Summarize Combined Enrichment Results # summarized_df <- summarize_enrichment_results(combined_res, # list_active_snw_genes = TRUE # ) # # ###### Annotate Affected Genes Involved in Each Enriched Term # final_res <- annotate_term_genes( # result_df = summarized_df, # input_processed = example_processed, # genes_by_term = biocarta_gsets # ) ## ----vis_pws------------------------------------------------------------------ # visualize_terms( # result_df = final_res, # hsa_KEGG = FALSE, # boolean to indicate whether human KEGG gene sets were used for enrichment analysis or not # pin_name_path = "Biogrid" # ) ## ----enr_chart---------------------------------------------------------------- # enrichment_chart(final_res[1:10, ])