Variational Expectation-Maximization algorithm to fit the noisy stochastic block model to an observed dense graph and to perform a node clustering. Moreover, a graph inference procedure to recover the underlying binary graph. This procedure comes with a control of the false discovery rate. The method is described in the article "Powerful graph inference with false discovery rate control" by T. Rebafka, E. Roquain, F. Villers (2020) <doi:10.48550/arXiv.1907.10176>.
| Version: | 0.1.4 | 
| Depends: | R (≥ 2.10) | 
| Imports: | parallel, gtools, ggplot2, RColorBrewer | 
| Suggests: | knitr, rmarkdown | 
| Published: | 2020-12-16 | 
| DOI: | 10.32614/CRAN.package.noisySBM | 
| Author: | Tabea Rebafka [aut, cre], Etienne Roquain [ctb], Fanny Villers [aut] | 
| Maintainer: | Tabea Rebafka <tabea.rebafka at sorbonne-universite.fr> | 
| License: | GPL-2 | 
| NeedsCompilation: | no | 
| CRAN checks: | noisySBM results | 
| Reference manual: | noisySBM.html , noisySBM.pdf | 
| Vignettes: | User guide for the noisySBM package (source, R code) | 
| Package source: | noisySBM_0.1.4.tar.gz | 
| Windows binaries: | r-devel: noisySBM_0.1.4.zip, r-release: noisySBM_0.1.4.zip, r-oldrel: noisySBM_0.1.4.zip | 
| macOS binaries: | r-release (arm64): noisySBM_0.1.4.tgz, r-oldrel (arm64): noisySBM_0.1.4.tgz, r-release (x86_64): noisySBM_0.1.4.tgz, r-oldrel (x86_64): noisySBM_0.1.4.tgz | 
Please use the canonical form https://CRAN.R-project.org/package=noisySBM to link to this page.