| Type: | Package | 
| Title: | Flexible Modeling of Multivariate Count Data via the Multivariate Conway-Maxwell-Poisson Distribution | 
| Version: | 1.1 | 
| Maintainer: | Diag Davenport <diag.davenport@gmail.com> | 
| Description: | A toolkit containing statistical analysis models motivated by multivariate forms of the Conway-Maxwell-Poisson (COM-Poisson) distribution for flexible modeling of multivariate count data, especially in the presence of data dispersion. Currently the package only supports bivariate data, via the bivariate COM-Poisson distribution described in Sellers et al. (2016) <doi:10.1016/j.jmva.2016.04.007>. Future development will extend the package to higher-dimensional data. | 
| Imports: | stats, numDeriv | 
| URL: | http://dx.doi.org/10.1016/j.jmva.2016.04.007 | 
| BugReports: | https://github.com/diagdavenport/multicmp/issues | 
| License: | GPL-3 | 
| LazyData: | TRUE | 
| RoxygenNote: | 6.0.1 | 
| NeedsCompilation: | no | 
| Packaged: | 2018-06-29 11:57:48 UTC; Diag Davenport | 
| Author: | Kimberly Sellers [aut], Darcy Steeg Morris [aut], Narayanaswamy Balakrishnan [aut], Diag Davenport [aut, cre] | 
| Repository: | CRAN | 
| Date/Publication: | 2018-06-29 12:08:59 UTC | 
Shunter accidents
Description
The number of accidents incurred by 122 shunters in two consecutive year periods, namely 1937 - 1942 and 1943 - 1947
Usage
accidents
Format
A dataframe with 122 rows and 2 variables:
- x
- Number of shunter accidents between 1937 and 1942 
- y
- Number of shunter accidents between 1943 and 1947 
Source
A. Arbous, J.E. Kerrick, Accident statistics and the concept of accident proneness, Biometrics 7 (1951) 340-432.
The Bivariate Conway-Maxwell-Poisson Distribution
Description
Density for the Bivariate Conway-Maxwell-Poisson (CMP) distribution
Usage
dbivCMP(lambda, nu, bivprob, x, y, maxit)
Arguments
| lambda | Mean/rate parameter under Poisson model. | 
| nu | Dispersion parameter. | 
| bivprob | Bivariate probabilities, p00, p01, p10, p11. | 
| x | x values | 
| y | y values | 
| maxit | Number of terms used to truncate infinite sum calculations. | 
References
Sellers KF, Morris DS, Balakrishnan N (2016) Bivariate Conway-Maxwell-Poisson Distribution: Formulation, Properties, and Inference, Journal of Multivariate Analysis 150:152-168.
Examples
dbivCMP(lambda=10, nu=1, bivprob=c(0.4, 0.2, 0.3, 0.1), x=2, y=3, maxit = 100) 
#this is equivalent to the pmf P(X=2,Y=3) of a bivariate Poisson 
##with lambda1=3, lambda2=2, lambda3=1
Bivariate COM-Poisson Parameter Estimation
Description
multicmpests computes the maximum likelihood estimates of a bivariate COM-Poisson distribution (based on the model described in Sellers et al. (2016)) for given count data and conducts a test for significant data dispersion, relative to a bivariate Poisson model.
The bivariate Poisson case is addressed via the bivpois package by Karlis and Ntzoufras (2009).
Usage
multicmpests(data, max = 100, startvalues = NULL)
Arguments
| data | A two-column dataset of counts. | 
| max | Truncation term for infinite summation associated with the Z function. See Sellers et al. (2016) for details. | 
| startvalues | A vector of starting values for maximum likelihood estimation. The values are read as follows: c(lambda, nu, p00, p10, p01, p11). The default is c(1,1, 0.25, 0.25, 0.25, 0.25). | 
Value
multicmpests will return a list of four elements: $par (Parameter Estimates), $negll (Negative Log-Likelihood), $LRTbpd (Dispersion Test Statistic), and
$pbpd (Dispersion Test P-Value).
References
Sellers KF, Morris DS, Balakrishnan N (2016) Bivariate Conway-Maxwell-Poisson Distribution: Formulation, Properties, and Inference, Journal of Multivariate Analysis 150:152-168.
Karlis D., Ntzoufras I. (2009) bivpois: Bivariate Poisson Models Using the EM Algorithm, Version 0.50-3.1. http://cran.wustl.edu/web/packages/bivpois/index.html
Examples
    x1 <- c(3,2,5,4,1)
    x2 <- c(0,4,1,0,1)
    ex.data <- cbind(x1,x2)
    
    # starting close to the optimum for sake of run time
    multicmpests(ex.data, startvalues = c(12.5 , 1.7 , 0, 0.25, 0.75, 0))