| Type: | Package | 
| Title: | Make Quick Descriptive Tables for Continuous Variables | 
| Description: | Quickly make tables of descriptive statistics (i.e., counts, means, confidence intervals) for continuous variables. This package is designed to work in a Tidyverse pipeline, and consideration has been given to get results from R to 'Microsoft Word' ® with minimal pain. | 
| Version: | 0.1.2 | 
| Maintainer: | Brad Cannell <brad.cannell@gmail.com> | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| Suggests: | knitr, rmarkdown, testthat | 
| VignetteBuilder: | knitr | 
| RoxygenNote: | 7.1.2 | 
| Imports: | dplyr, tibble, rlang, stringr | 
| NeedsCompilation: | no | 
| Packaged: | 2022-03-19 21:35:49 UTC; bradcannell | 
| Author: | Brad Cannell [aut, cre, cph] | 
| Repository: | CRAN | 
| Date/Publication: | 2022-03-19 21:50:02 UTC | 
Format mean_table Output for Publication and Dissemination
Description
The mean_format function is intended to make it quick and easy to format the output of the mean_table function for tables that may be used for publication. For example, a mean and 95 could be formatted as "24.00 (21.00 - 27.00)."
Usage
mean_format(.data, recipe, name = NA, digits = NA)
Arguments
| .data | A data frame of class "mean_table" or "mean_table_grouped". | 
| recipe | A recipe used to create a new column from existing mean_table columns. The recipe must be in the form of a quoted string. It may contain any combination of column names, spaces, and characters. For example: "mean (sd)" or "mean (lcl - ucl)". | 
| name | An optional name to assign to the column created by the recipe. The default name is "formatted_stats" | 
| digits | The number of decimal places to display. | 
Value
A tibble
Examples
## Not run: 
library(dplyr)
library(meantables)
data(mtcars)
# Overall mean table with defaults
mtcars %>%
  mean_table(mpg) %>%
  mean_format("mean (sd)") %>%
  select(response_var, formatted_stats)
# A tibble: 1 × 2
  response_var formatted_stats
  <chr>        <chr>
1 mpg          20.09 (6.03)
# Grouped means table with defaults
mtcars %>%
  group_by(cyl) %>%
  mean_table(mpg) %>%
  mean_format("mean (sd)") %>%
  select(response_var:group_cat, formatted_stats)
  # A tibble: 3 × 4
  response_var group_var group_cat formatted_stats
  <chr>        <chr>         <dbl> <chr>
1 mpg          cyl               4 26.66 (4.51)
2 mpg          cyl               6 19.74 (1.45)
3 mpg          cyl               8 15.1 (2.56)
## End(Not run)
Estimate Mean and 95 Percent Confidence Intervals in dplyr Pipelines
Description
The mean_table function produces overall and grouped tables of means with related statistics. In addition to means, the mean_table missing/non-missing frequencies, the standard error of the mean (sem), the 95 value, and the maximum value. For grouped tibbles, mean_table displays these statistics for each category of the group_by variable.
Usage
mean_table(.data, .x, t_prob = 0.975, output = default, digits = 2, ...)
Arguments
| .data | A tibble or grouped tibble. | 
| .x | The continuous response variable for which the statistics are desired. | 
| t_prob | (1 - alpha / 2). Default value is 0.975, which corresponds to an alpha of 0.05. Used to calculate a critical value from Student's t distribution with n - 1 degrees of freedom. | 
| output | Options for this parameter are "default" and "all". Default output includes the n, mean, sem, and 95 the mean. Using output = "all" also returns the the number of missing values for .x and the critical t-value. | 
| digits | Round mean, lcl, and ucl to digits. Default is 2. | 
| ... | Other parameters to be passed on. | 
Value
A tibble of class "mean_table" or "mean_table_grouped"
References
SAS documentation: http://support.sas.com/documentation/cdl/en/proc/65145/HTML/default/viewer.htm#p0klmrp4k89pz0n1p72t0clpavyx.htm
Examples
## Not run: 
library(dplyr)
library(meantables)
data(mtcars)
# Overall mean table with defaults
mtcars %>%
  mean_table(mpg)
# A tibble: 1 x 9
  response_var     n  mean    sd   sem   lcl   ucl   min   max
  <chr>        <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 mpg             32  20.1  6.03  1.07  17.9  22.3  10.4  33.9
# Grouped means table with defaults
mtcars %>%
  group_by(cyl) %>%
  mean_table(mpg)
# A tibble: 3 x 11
  response_var group_var group_cat     n  mean    sd   sem   lcl   ucl   min   max
  <chr>        <chr>         <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 mpg          cyl               4    11  26.7  4.51 1.36   23.6  29.7  21.4  33.9
2 mpg          cyl               6     7  19.7  1.45 0.549  18.4  21.1  17.8  21.4
3 mpg          cyl               8    14  15.1  2.56 0.684  13.6  16.6  10.4  19.2
## End(Not run)