mase: Model-Assisted Survey Estimators
A set of model-assisted survey estimators and corresponding
    variance estimators for single stage, unequal probability, without replacement
    sampling designs.  All of the estimators can be written as a generalized 
    regression estimator with the Horvitz-Thompson, ratio, post-stratified, and 
    regression estimators summarized by Sarndal et al. (1992, ISBN:978-0-387-40620-6).
    Two of the estimators employ a statistical learning model as the assisting model:
    the elastic net regression estimator, which is an extension of the lasso regression
    estimator given by McConville et al. (2017) <doi:10.1093/jssam/smw041>, and the 
    regression tree estimator described in McConville and Toth (2017) <doi:10.48550/arXiv.1712.05708>. 
    The variance estimators which approximate the joint inclusion probabilities can
    be found in Berger and Tille (2009) <doi:10.1016/S0169-7161(08)00002-3> and the
    bootstrap variance estimator is presented in Mashreghi et al. (2016) 
    <doi:10.1214/16-SS113>.
| Version: | 0.1.5.2 | 
| Depends: | R (≥ 4.1.0) | 
| Imports: | glmnet, survey, dplyr, tidyr, rpms, boot, stats, Rdpack, ellipsis, Rcpp | 
| LinkingTo: | Rcpp, RcppEigen | 
| Suggests: | roxygen2, testthat (≥ 3.0.0), knitr, rmarkdown | 
| Published: | 2024-01-17 | 
| DOI: | 10.32614/CRAN.package.mase | 
| Author: | Kelly McConville [cre, aut, cph],
  Josh Yamamoto [aut],
  Becky Tang [aut],
  George Zhu [aut],
  Sida Li [ctb],
  Shirley Chueng [ctb],
  Daniell Toth [ctb] | 
| Maintainer: | Kelly McConville  <kmcconville at fas.harvard.edu> | 
| License: | GPL-2 | 
| NeedsCompilation: | yes | 
| Citation: | mase citation info | 
| Materials: | README | 
| CRAN checks: | mase results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=mase
to link to this page.