lphom: Ecological Inference by Linear Programming under Homogeneity
Provides a bunch of algorithms based on linear programming for estimating, under 
    the homogeneity hypothesis, RxC ecological contingency tables (or vote transition matrices) 
    using mainly aggregate data (from voting units). 
    References: 
    Pavía and Romero (2024) <doi:10.1177/00491241221092725>.
    Pavía and Romero (2024) <doi:10.1093/jrsssa/qnae013>.
    Pavía (2023) <doi:10.1007/s43545-023-00658-y>.
    Pavía (2024) <doi:10.1080/0022250X.2024.2423943>.
    Pavía (2024) <doi:10.1177/07591063241277064>.
    Pavía and Penadés (2024). A bottom-up approach for ecological inference.
    Romero, Pavía, Martín and Romero (2020) <doi:10.1080/02664763.2020.1804842>.
    Acknowledgements:
    The authors wish to thank Consellería de Educación, Cultura, Universidades y Empleo, Generalitat Valenciana (grants AICO/2021/257, CIAICO/2023/031) and MICIU/AEI/10.13039/501100011033/FEDER, UE (grant PID2021-128228NB-I00) for supporting this research.
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=lphom
to link to this page.