The lessSEM package comes with a custom implementation of structural equation models (SEM). This implementation supports full-information-maximum-likelihood computation in case of missing data and could also be used by other packages. Identical to regsem lessSEM also builds on lavaan to set up the model. That is, if you are already familiar with lavaan, setting up models with lessSEM should be relatively easy.
We will use the political democracy example from the sem documentation of lavaan in the following:
library(lavaan)
# see ?lavaan::sem
model <- ' 
  # latent variable definitions
     ind60 =~ x1 + x2 + x3
     dem60 =~ y1 + a*y2 + b*y3 + c*y4
     dem65 =~ y5 + a*y6 + b*y7 + c*y8
  # regressions
    dem60 ~ ind60
    dem65 ~ ind60 + dem60
  # residual correlations
    y1 ~~ y5
    y2 ~~ y4 + y6
    y3 ~~ y7
    y4 ~~ y8
    y6 ~~ y8
'
lavaanModel <- sem(model, data = PoliticalDemocracy)To translate the model from lavaan to lessSEM, we have to use the
lessSEM:::.SEMFromLavaan function. Importantly, this
function is not exported by lessSEM. That is, you must use the
three colons as shown above to access this function!
library(lessSEM)
# won't work:
mySEM <- .SEMFromLavaan(lavaanModel = lavaanModel)
# will work:
mySEM <- lessSEM:::.SEMFromLavaan(lavaanModel = lavaanModel)show(mySEM)
#> Internal C++ model representation of lessSEM
#> Parameters:
#>    ind60=~x2    ind60=~x3            a            b            c  dem60~ind60  dem65~ind60  dem65~dem60       y1~~y5 
#>    2.1796566    1.8182100    1.1907820    1.1745407    1.2509789    1.4713302    0.6004746    0.8650430    0.5825389 
#>       y2~~y4       y2~~y6       y3~~y7       y4~~y8       y6~~y8       x1~~x1       x2~~x2       x3~~x3       y1~~y1 
#>    1.4402477    2.1829448    0.7115901    0.3627964    1.3717741    0.0813878    0.1204271    0.4666596    1.8546417 
#>       y2~~y2       y3~~y3       y4~~y4       y5~~y5       y6~~y6       y7~~y7       y8~~y8 ind60~~ind60 dem60~~dem60 
#>    7.5813926    4.9556766    3.2245521    2.3130404    4.9681408    3.5600367    3.3076854    0.4485989    3.8753039 
#> dem65~~dem65         x1~1         x2~1         x3~1         y1~1         y2~1         y3~1         y4~1         y5~1 
#>    0.1644633    5.0543838    4.7921946    3.5576898    5.4646667    4.2564429    6.5631103    4.4525330    5.1362519 
#>         y6~1         y7~1         y8~1 
#>    2.9780741    6.1962639    4.0433897 
#> 
#> Objective value: 3097.6361581071The lessSEM:::.SEMFromLavaan function comes with some
additional arguments to fine tune the initialization of the model.
whichPars: with the whichPars arguments,
we can change which parameters are used in the mySEM created above. By
default, we will use the estimates (whichPars = "est") of
the lavaan model, but we could also use the starting values
(whichPars = "start") or supply custom parameter
valuesfit: When fit = TRUE, lessSEM will fit the
model once and compare the fitting function value to that of the
lavaanModel. If you supplied parameters other than “est”, this should be
set to fit = FALSEaddMeans: Should a mean structure be added? It is
currenlty recomended to set this to TRUEactiveSet: This allows for only using part of the data
set. This can be useful for cross-validation.dataSet: This allows for passing a different data set
to mySEM. This can be useful for cross-validation.In most cases, we recommend setting up the model as shown above, with none of the additional arguments being used.
The mySEM object is implemented in C++ to make everything run faster.
The underlying class is Rcpp_SEMCpp and was created using
the wonderful Rcpp and RcppArmadillo
packages.
You can access its elements using the dollar-operator:
mySEM$A
#>            [,1]     [,2]     [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#>  [1,] 0.0000000 0.000000 0.000000    0    0    0    0    0    0     0     0     0     0     0
#>  [2,] 1.4713302 0.000000 0.000000    0    0    0    0    0    0     0     0     0     0     0
#>  [3,] 0.6004746 0.865043 0.000000    0    0    0    0    0    0     0     0     0     0     0
#>  [4,] 1.0000000 0.000000 0.000000    0    0    0    0    0    0     0     0     0     0     0
#>  [5,] 2.1796566 0.000000 0.000000    0    0    0    0    0    0     0     0     0     0     0
#>  [6,] 1.8182100 0.000000 0.000000    0    0    0    0    0    0     0     0     0     0     0
#>  [7,] 0.0000000 1.000000 0.000000    0    0    0    0    0    0     0     0     0     0     0
#>  [8,] 0.0000000 1.190782 0.000000    0    0    0    0    0    0     0     0     0     0     0
#>  [9,] 0.0000000 1.174541 0.000000    0    0    0    0    0    0     0     0     0     0     0
#> [10,] 0.0000000 1.250979 0.000000    0    0    0    0    0    0     0     0     0     0     0
#> [11,] 0.0000000 0.000000 1.000000    0    0    0    0    0    0     0     0     0     0     0
#> [12,] 0.0000000 0.000000 1.190782    0    0    0    0    0    0     0     0     0     0     0
#> [13,] 0.0000000 0.000000 1.174541    0    0    0    0    0    0     0     0     0     0     0
#> [14,] 0.0000000 0.000000 1.250979    0    0    0    0    0    0     0     0     0     0     0Note that, identical to regsem, the model is implemented with the RAM notation (McArdle & McDonald, 1984). If you are not familiar with this notation, Fox (2006) provides a short introduction. However, you won’t need to know the details for the time being. Instead, we will focus on how to get and set the parameters, fit the model, get its gradients, etc.
The parameters of the model can be accessed with the
lessSEM:::.getParameters function:
(myParameters <- lessSEM:::.getParameters(mySEM))
#>    ind60=~x2    ind60=~x3            a            b            c  dem60~ind60  dem65~ind60  dem65~dem60       y1~~y5 
#>    2.1796566    1.8182100    1.1907820    1.1745407    1.2509789    1.4713302    0.6004746    0.8650430    0.5825389 
#>       y2~~y4       y2~~y6       y3~~y7       y4~~y8       y6~~y8       x1~~x1       x2~~x2       x3~~x3       y1~~y1 
#>    1.4402477    2.1829448    0.7115901    0.3627964    1.3717741    0.0813878    0.1204271    0.4666596    1.8546417 
#>       y2~~y2       y3~~y3       y4~~y4       y5~~y5       y6~~y6       y7~~y7       y8~~y8 ind60~~ind60 dem60~~dem60 
#>    7.5813926    4.9556766    3.2245521    2.3130404    4.9681408    3.5600367    3.3076854    0.4485989    3.8753039 
#> dem65~~dem65         x1~1         x2~1         x3~1         y1~1         y2~1         y3~1         y4~1         y5~1 
#>    0.1644633    5.0543838    4.7921946    3.5576898    5.4646667    4.2564429    6.5631103    4.4525330    5.1362519 
#>         y6~1         y7~1         y8~1 
#>    2.9780741    6.1962639    4.0433897The naming is identical to that of the lavaanModel. By default, the
parameters are returned in the transformed format. This requires some
more explanation: In lessSEM we assume that negative variances are
outside of the parameter space. That is, negative variances are
not allowed (this is different from lavaan!). To ensure
that all variances are positive, we use a transformation: Say we are
interested in the variance ind60~~ind60. Internally, there
is a parameter called x1~~x1 and this parameter has a
rawValue and a transformed value (called just
value). We can access these values with:
mySEM$getParameters()
#>           label     value   rawValue location isTransformation
#> 1     ind60=~x2 2.1796566  2.1796566  Amatrix            FALSE
#> 2     ind60=~x3 1.8182100  1.8182100  Amatrix            FALSE
#> 3             a 1.1907820  1.1907820  Amatrix            FALSE
#> 4             b 1.1745407  1.1745407  Amatrix            FALSE
#> 5             c 1.2509789  1.2509789  Amatrix            FALSE
#> 6   dem60~ind60 1.4713302  1.4713302  Amatrix            FALSE
#> 7   dem65~ind60 0.6004746  0.6004746  Amatrix            FALSE
#> 8   dem65~dem60 0.8650430  0.8650430  Amatrix            FALSE
#> 9        y1~~y5 0.5825389  0.5825389  Smatrix            FALSE
#> 10       y2~~y4 1.4402477  1.4402477  Smatrix            FALSE
#> 11       y2~~y6 2.1829448  2.1829448  Smatrix            FALSE
#> 12       y3~~y7 0.7115901  0.7115901  Smatrix            FALSE
#> 13       y4~~y8 0.3627964  0.3627964  Smatrix            FALSE
#> 14       y6~~y8 1.3717741  1.3717741  Smatrix            FALSE
#> 15       x1~~x1 0.0813878 -2.5085299  Smatrix            FALSE
#> 16       x2~~x2 0.1204271 -2.1167106  Smatrix            FALSE
#> 17       x3~~x3 0.4666596 -0.7621551  Smatrix            FALSE
#> 18       y1~~y1 1.8546417  0.6176915  Smatrix            FALSE
#> 19       y2~~y2 7.5813926  2.0256969  Smatrix            FALSE
#> 20       y3~~y3 4.9556766  1.6005337  Smatrix            FALSE
#> 21       y4~~y4 3.2245521  1.1707941  Smatrix            FALSE
#> 22       y5~~y5 2.3130404  0.8385629  Smatrix            FALSE
#> 23       y6~~y6 4.9681408  1.6030457  Smatrix            FALSE
#> 24       y7~~y7 3.5600367  1.2697708  Smatrix            FALSE
#> 25       y8~~y8 3.3076854  1.1962487  Smatrix            FALSE
#> 26 ind60~~ind60 0.4485989 -0.8016262  Smatrix            FALSE
#> 27 dem60~~dem60 3.8753039  1.3546241  Smatrix            FALSE
#> 28 dem65~~dem65 0.1644633 -1.8050678  Smatrix            FALSE
#> 29         x1~1 5.0543838  5.0543838  Mvector            FALSE
#> 30         x2~1 4.7921946  4.7921946  Mvector            FALSE
#> 31         x3~1 3.5576898  3.5576898  Mvector            FALSE
#> 32         y1~1 5.4646667  5.4646667  Mvector            FALSE
#> 33         y2~1 4.2564429  4.2564429  Mvector            FALSE
#> 34         y3~1 6.5631103  6.5631103  Mvector            FALSE
#> 35         y4~1 4.4525330  4.4525330  Mvector            FALSE
#> 36         y5~1 5.1362519  5.1362519  Mvector            FALSE
#> 37         y6~1 2.9780741  2.9780741  Mvector            FALSE
#> 38         y7~1 6.1962639  6.1962639  Mvector            FALSE
#> 39         y8~1 4.0433897  4.0433897  Mvector            FALSEFor all parameters which are not variances, the
rawValue will be identical to the value. For
variances, the rawValue can be any real value. The
value itself is then computed as \(e^{\text{rawValue}}\); this ensures that
the value is always positive. You can access the raw values
as follows:
lessSEM:::.getParameters(mySEM, raw = TRUE)
#>    ind60=~x2    ind60=~x3            a            b            c  dem60~ind60  dem65~ind60  dem65~dem60       y1~~y5 
#>    2.1796566    1.8182100    1.1907820    1.1745407    1.2509789    1.4713302    0.6004746    0.8650430    0.5825389 
#>       y2~~y4       y2~~y6       y3~~y7       y4~~y8       y6~~y8       x1~~x1       x2~~x2       x3~~x3       y1~~y1 
#>    1.4402477    2.1829448    0.7115901    0.3627964    1.3717741   -2.5085299   -2.1167106   -0.7621551    0.6176915 
#>       y2~~y2       y3~~y3       y4~~y4       y5~~y5       y6~~y6       y7~~y7       y8~~y8 ind60~~ind60 dem60~~dem60 
#>    2.0256969    1.6005337    1.1707941    0.8385629    1.6030457    1.2697708    1.1962487   -0.8016262    1.3546241 
#> dem65~~dem65         x1~1         x2~1         x3~1         y1~1         y2~1         y3~1         y4~1         y5~1 
#>   -1.8050678    5.0543838    4.7921946    3.5576898    5.4646667    4.2564429    6.5631103    4.4525330    5.1362519 
#>         y6~1         y7~1         y8~1 
#>    2.9780741    6.1962639    4.0433897Note that the raw value for ind60~~ind60 is negative
while the transformed value is positive.
Being able to change the parameters is essential for fitting a model.
In lessSEM, this is facilitated by the
lessSEM:::.setParameters function:
# first, let's change one of the parameters:
myParameters["a"] <- 1
# now, let's change the parameters of the model
mySEM <- lessSEM:::.setParameters(SEM = mySEM, # the model
                                  labels = names(myParameters), # names of the parameters
                                  values = myParameters, # values of the parameters 
                                  raw = FALSE)Note that we had to specify if the parameters in
myParameters are given in raw format. Here, we already used
the transformed parameters, so we set raw = FALSE. Using
the raw parameters instead would look as follows:
myParameters <- lessSEM:::.getParameters(mySEM, raw = TRUE)
# first, let's change one of the parameters:
myParameters["a"] <- 1
# now, let's change the parameters of the model
mySEM <- lessSEM:::.setParameters(SEM = mySEM, # the model
                                  labels = names(myParameters), # names of the parameters
                                  values = myParameters, # values of the parameters
                                  raw = TRUE)Let’s check the parameters:
lessSEM:::.getParameters(mySEM)
#>    ind60=~x2    ind60=~x3            a            b            c  dem60~ind60  dem65~ind60  dem65~dem60       y1~~y5 
#>    2.1796566    1.8182100    1.0000000    1.1745407    1.2509789    1.4713302    0.6004746    0.8650430    0.5825389 
#>       y2~~y4       y2~~y6       y3~~y7       y4~~y8       y6~~y8       x1~~x1       x2~~x2       x3~~x3       y1~~y1 
#>    1.4402477    2.1829448    0.7115901    0.3627964    1.3717741    0.0813878    0.1204271    0.4666596    1.8546417 
#>       y2~~y2       y3~~y3       y4~~y4       y5~~y5       y6~~y6       y7~~y7       y8~~y8 ind60~~ind60 dem60~~dem60 
#>    7.5813926    4.9556766    3.2245521    2.3130404    4.9681408    3.5600367    3.3076854    0.4485989    3.8753039 
#> dem65~~dem65         x1~1         x2~1         x3~1         y1~1         y2~1         y3~1         y4~1         y5~1 
#>    0.1644633    5.0543838    4.7921946    3.5576898    5.4646667    4.2564429    6.5631103    4.4525330    5.1362519 
#>         y6~1         y7~1         y8~1 
#>    2.9780741    6.1962639    4.0433897Note that a now has the value 1.
To compute the -2-log-likelihood of the model, we use the
lessSEM:::.fit function:
The -2-log-likelihood can be accessed with:
To compute the gradients, use the
lessSEM:::.getGradients function. Gradients can be computed
for the transformed parameters
lessSEM:::.getGradients(mySEM, raw = FALSE)
#>     ind60=~x2     ind60=~x3             a             b             c   dem60~ind60   dem65~ind60   dem65~dem60        y1~~y5 
#>   0.361097622   0.105564095 -32.837359814   2.453232158  17.076222049  -0.450648533  -1.078272542  -5.357920036   0.004650747 
#>        y2~~y4        y2~~y6        y3~~y7        y4~~y8        y6~~y8        x1~~x1        x2~~x2        x3~~x3        y1~~y1 
#>  -0.157923486  -0.567076177   0.161163293   0.266869495  -0.271533827   0.230054158   0.306685898  -0.093753843  -0.015516535 
#>        y2~~y2        y3~~y3        y4~~y4        y5~~y5        y6~~y6        y7~~y7        y8~~y8  ind60~~ind60  dem60~~dem60 
#>  -0.343353554   0.099359383   0.137753880   0.131454473  -0.330083693   0.073331567   0.148964628  -0.103960291  -0.252921392 
#>  dem65~~dem65          x1~1          x2~1          x3~1          y1~1          y2~1          y3~1          y4~1          y5~1 
#>  -1.955349241   0.000000000   0.000000000   0.000000000   0.000000000   0.000000000   0.000000000   0.000000000   0.000000000 
#>          y6~1          y7~1          y8~1 
#>   0.000000000   0.000000000   0.000000000or for the raw parameters
lessSEM:::.getGradients(mySEM, raw = TRUE)
#>     ind60=~x2     ind60=~x3             a             b             c   dem60~ind60   dem65~ind60   dem65~dem60        y1~~y5 
#>   0.361097622   0.105564095 -32.837359814   2.453232158  17.076222049  -0.450648533  -1.078272542  -5.357920036   0.004650747 
#>        y2~~y4        y2~~y6        y3~~y7        y4~~y8        y6~~y8        x1~~x1        x2~~x2        x3~~x3        y1~~y1 
#>  -0.157923486  -0.567076177   0.161163293   0.266869495  -0.271533827   0.018723602   0.036933297  -0.043751134  -0.028777612 
#>        y2~~y2        y3~~y3        y4~~y4        y5~~y5        y6~~y6        y7~~y7        y8~~y8  ind60~~ind60  dem60~~dem60 
#>  -2.603098086   0.492392971   0.444194569   0.304059508  -1.639902248   0.261063066   0.492728130  -0.046636468  -0.980147244 
#>  dem65~~dem65          x1~1          x2~1          x3~1          y1~1          y2~1          y3~1          y4~1          y5~1 
#>  -0.321583201   0.000000000   0.000000000   0.000000000   0.000000000   0.000000000   0.000000000   0.000000000   0.000000000 
#>          y6~1          y7~1          y8~1 
#>   0.000000000   0.000000000   0.000000000To compute the Hessian, use the lessSEM:::.getHessian
function. The Hessian can be computed for the transformed parameters
or for the raw parameters
To compute the scores (derivative of the -2-log-likelihood for each
person), use the lessSEM:::.getScores function. The scores
can be computed for the transformed parameters
or for the raw parameters
The most important part about the whole SEM implementation mentioned above is that we can use it flexibly with different optimizers. For instance, we may want to try out the BFGS optimizer from optim.
Important: We highly recommend that you use the raw parameters for any optimization. Using the non-raw parameters can cause errors and unnecessary headaches!
Let’s have a look at the optim function:
args(optim)
#> function (par, fn, gr = NULL, ..., method = c("Nelder-Mead", 
#>     "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"), lower = -Inf, 
#>     upper = Inf, control = list(), hessian = FALSE) 
#> NULLNote that the function requires a par argument - the
parameter estimates - a fn argument - the fitting function
- and also allows for the gradients to be passed to the function using
the gr argument. We could build such functions based on the
lessSEM:::.fit and lessSEM:::.getGradients
functions shown above, however for convenience such wrappers are already
implemented in lessSEM. The fitting function is called with
lessSEM:::.fitFunction and the gradient function is called
lessSEM:::.gradientFunction. Both expect a vector with
parameters, a SEM, and an argument specifying if the parameters are in
raw format.
We can use this in optim as follows:
# let's get the starting values:
par <- lessSEM:::.getParameters(mySEM, raw = TRUE) # important: Use raw = TRUE!
print(par)
#>    ind60=~x2    ind60=~x3            a            b            c  dem60~ind60  dem65~ind60  dem65~dem60       y1~~y5 
#>    2.1796566    1.8182100    1.0000000    1.1745407    1.2509789    1.4713302    0.6004746    0.8650430    0.5825389 
#>       y2~~y4       y2~~y6       y3~~y7       y4~~y8       y6~~y8       x1~~x1       x2~~x2       x3~~x3       y1~~y1 
#>    1.4402477    2.1829448    0.7115901    0.3627964    1.3717741   -2.5085299   -2.1167106   -0.7621551    0.6176915 
#>       y2~~y2       y3~~y3       y4~~y4       y5~~y5       y6~~y6       y7~~y7       y8~~y8 ind60~~ind60 dem60~~dem60 
#>    2.0256969    1.6005337    1.1707941    0.8385629    1.6030457    1.2697708    1.1962487   -0.8016262    1.3546241 
#> dem65~~dem65         x1~1         x2~1         x3~1         y1~1         y2~1         y3~1         y4~1         y5~1 
#>   -1.8050678    5.0543838    4.7921946    3.5576898    5.4646667    4.2564429    6.5631103    4.4525330    5.1362519 
#>         y6~1         y7~1         y8~1 
#>    2.9780741    6.1962639    4.0433897
opt <- optim(par = par, 
             fn = lessSEM:::.fitFunction, # use the fitting function wrapper
             gr = lessSEM:::.gradientFunction, # use the gradient function wrapper
             SEM = mySEM, # use the SEM we created above
             raw = TRUE, # make sure to tell the functions that we are using raw parameters
             method = "BFGS" # use the BFGS optimizer
)
print(opt$par)
#>    ind60=~x2    ind60=~x3            a            b            c  dem60~ind60  dem65~ind60  dem65~dem60       y1~~y5 
#>    2.1791276    1.8180458    1.1909397    1.1740909    1.2511328    1.4725867    0.6007137    0.8649836    0.5817910 
#>       y2~~y4       y2~~y6       y3~~y7       y4~~y8       y6~~y8       x1~~x1       x2~~x2       x3~~x3       y1~~y1 
#>    1.4336940    2.1828828    0.7229781    0.3605874    1.3774602   -2.5093044   -2.1126718   -0.7633056    0.6178333 
#>       y2~~y2       y3~~y3       y4~~y4       y5~~y5       y6~~y6       y7~~y7       y8~~y8 ind60~~ind60 dem60~~dem60 
#>    2.0246995    1.6022529    1.1690474    0.8385775    1.6039528    1.2711405    1.1971146   -0.8013687    1.3542390 
#> dem65~~dem65         x1~1         x2~1         x3~1         y1~1         y2~1         y3~1         y4~1         y5~1 
#>   -1.8057174    5.0543838    4.7921946    3.5576898    5.4646667    4.2564429    6.5631103    4.4525330    5.1362519 
#>         y6~1         y7~1         y8~1 
#>    2.9780741    6.1962639    4.0433897Note that the parameter a is now back at the maximum
likelihood estimate from before. However, all parameters are still in
raw format. To get the transformed parameters, let’s take one more
step:
mySEM <- lessSEM:::.setParameters(SEM = mySEM, # the model
                                  labels = names(opt$par), # names of the parameters
                                  values = opt$par, # values of the parameters
                                  raw = TRUE)
print(lessSEM:::.getParameters(mySEM, raw = FALSE))
#>    ind60=~x2    ind60=~x3            a            b            c  dem60~ind60  dem65~ind60  dem65~dem60       y1~~y5 
#>   2.17912764   1.81804575   1.19093968   1.17409087   1.25113276   1.47258673   0.60071368   0.86498364   0.58179103 
#>       y2~~y4       y2~~y6       y3~~y7       y4~~y8       y6~~y8       x1~~x1       x2~~x2       x3~~x3       y1~~y1 
#>   1.43369401   2.18288278   0.72297808   0.36058737   1.37746019   0.08132479   0.12091448   0.46612308   1.85490471 
#>       y2~~y2       y3~~y3       y4~~y4       y5~~y5       y6~~y6       y7~~y7       y8~~y8 ind60~~ind60 dem60~~dem60 
#>   7.57383439   4.96420359   3.21892497   2.31307420   4.97264951   3.56491599   3.31055101   0.44871438   3.87381195 
#> dem65~~dem65         x1~1         x2~1         x3~1         y1~1         y2~1         y3~1         y4~1         y5~1 
#>   0.16435650   5.05438384   4.79219463   3.55768979   5.46466667   4.25644288   6.56311025   4.45253304   5.13625192 
#>         y6~1         y7~1         y8~1 
#>   2.97807408   6.19626389   4.04338968Compare those to the parameter estimates from lavaan:
coef(lavaanModel)
#>    ind60=~x2    ind60=~x3            a            b            c            a            b            c  dem60~ind60 
#>        2.180        1.818        1.191        1.175        1.251        1.191        1.175        1.251        1.471 
#>  dem65~ind60  dem65~dem60       y1~~y5       y2~~y4       y2~~y6       y3~~y7       y4~~y8       y6~~y8       x1~~x1 
#>        0.600        0.865        0.583        1.440        2.183        0.712        0.363        1.372        0.081 
#>       x2~~x2       x3~~x3       y1~~y1       y2~~y2       y3~~y3       y4~~y4       y5~~y5       y6~~y6       y7~~y7 
#>        0.120        0.467        1.855        7.581        4.956        3.225        2.313        4.968        3.560 
#>       y8~~y8 ind60~~ind60 dem60~~dem60 dem65~~dem65 
#>        3.308        0.449        3.875        0.164Finally, we can compute the standard errors:
lessSEM:::.standardErrors(SEM = mySEM, raw = FALSE)
#>    ind60=~x2    ind60=~x3            a            b            c  dem60~ind60  dem65~ind60  dem65~dem60       y1~~y5 
#>   0.13885220   0.15204330   0.14166120   0.11987057   0.12295637   0.39139697   0.23828914   0.07567860   0.36462027 
#>       y2~~y4       y2~~y6       y3~~y7       y4~~y8       y6~~y8       x1~~x1       x2~~x2       x3~~x3       y1~~y1 
#>   0.68977247   0.73096919   0.62119517   0.46062832   0.57969390   0.01968652   0.06991196   0.08897395   0.45717112 
#>       y2~~y2       y3~~y3       y4~~y4       y5~~y5       y6~~y6       y7~~y7       y8~~y8 ind60~~ind60 dem60~~dem60 
#>   1.34332170   0.96373267   0.74092220   0.48364101   0.89600779   0.73922562   0.71425331   0.08675480   0.88802932 
#> dem65~~dem65         x1~1         x2~1         x3~1         y1~1         y2~1         y3~1         y4~1         y5~1 
#>   0.23331748   0.08406657   0.17326967   0.16121433   0.29892606   0.43891242   0.39404806   0.37957637   0.30446534 
#>         y6~1         y7~1         y8~1 
#>   0.39247640   0.36442149   0.37545879Let’s compare this to lavaan again:
parameterEstimates(lavaanModel)[,1:6]
#>      lhs op   rhs label   est    se
#> 1  ind60 =~    x1       1.000 0.000
#> 2  ind60 =~    x2       2.180 0.138
#> 3  ind60 =~    x3       1.818 0.152
#> 4  dem60 =~    y1       1.000 0.000
#> 5  dem60 =~    y2     a 1.191 0.139
#> 6  dem60 =~    y3     b 1.175 0.120
#> 7  dem60 =~    y4     c 1.251 0.117
#> 8  dem65 =~    y5       1.000 0.000
#> 9  dem65 =~    y6     a 1.191 0.139
#> 10 dem65 =~    y7     b 1.175 0.120
#> 11 dem65 =~    y8     c 1.251 0.117
#> 12 dem60  ~ ind60       1.471 0.392
#> 13 dem65  ~ ind60       0.600 0.226
#> 14 dem65  ~ dem60       0.865 0.075
#> 15    y1 ~~    y5       0.583 0.356
#> 16    y2 ~~    y4       1.440 0.689
#> 17    y2 ~~    y6       2.183 0.737
#> 18    y3 ~~    y7       0.712 0.611
#> 19    y4 ~~    y8       0.363 0.444
#> 20    y6 ~~    y8       1.372 0.577
#> 21    x1 ~~    x1       0.081 0.019
#> 22    x2 ~~    x2       0.120 0.070
#> 23    x3 ~~    x3       0.467 0.090
#> 24    y1 ~~    y1       1.855 0.433
#> 25    y2 ~~    y2       7.581 1.366
#> 26    y3 ~~    y3       4.956 0.956
#> 27    y4 ~~    y4       3.225 0.723
#> 28    y5 ~~    y5       2.313 0.479
#> 29    y6 ~~    y6       4.968 0.921
#> 30    y7 ~~    y7       3.560 0.710
#> 31    y8 ~~    y8       3.308 0.704
#> 32 ind60 ~~ ind60       0.449 0.087
#> 33 dem60 ~~ dem60       3.875 0.866
#> 34 dem65 ~~ dem65       0.164 0.227