Forest-based statistical estimation and inference.
  GRF provides non-parametric methods for heterogeneous treatment effects estimation
  (optionally using right-censored outcomes, multiple treatment arms or outcomes, or instrumental variables),
  as well as least-squares regression, quantile regression, and survival regression,
  all with support for missing covariates.
| Version: | 2.5.0 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | DiceKriging, lmtest, Matrix, methods, Rcpp (≥ 0.12.15), sandwich (≥ 2.4-0) | 
| LinkingTo: | Rcpp, RcppEigen | 
| Suggests: | DiagrammeR, MASS, rdrobust, survival (≥ 3.2-8), testthat (≥
3.0.4) | 
| Published: | 2025-10-09 | 
| DOI: | 10.32614/CRAN.package.grf | 
| Author: | Julie Tibshirani [aut],
  Susan Athey [aut],
  Rina Friedberg [ctb],
  Vitor Hadad [ctb],
  David Hirshberg [ctb],
  Luke Miner [ctb],
  Erik Sverdrup [aut, cre],
  Stefan Wager [aut],
  Marvin Wright [ctb] | 
| Maintainer: | Erik Sverdrup  <erik.sverdrup at monash.edu> | 
| BugReports: | https://github.com/grf-labs/grf/issues | 
| License: | GPL-3 | 
| URL: | https://github.com/grf-labs/grf | 
| NeedsCompilation: | yes | 
| SystemRequirements: | GNU make | 
| In views: | CausalInference, Econometrics, MachineLearning, MissingData | 
| CRAN checks: | grf results |