| Title: | Stochastic Quasi-Gradient Differential Evolution Optimization | 
| Version: | 1.0.1 | 
| Description: | An optim-style implementation of the Stochastic Quasi-Gradient Differential Evolution (SQG-DE) optimization algorithm first published by Sala, Baldanzini, and Pierini (2018; <doi:10.1007/978-3-319-72926-8_27>). This optimization algorithm fuses the robustness of the population-based global optimization algorithm "Differential Evolution" with the efficiency of gradient-based optimization. The derivative-free algorithm uses population members to build stochastic gradient estimates, without any additional objective function evaluations. Sala, Baldanzini, and Pierini argue this algorithm is useful for 'difficult optimization problems under a tight function evaluation budget.' This package can run SQG-DE in parallel and sequentially. | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/bmgaldo/graDiEnt | 
| BugReports: | https://github.com/bmgaldo/graDiEnt | 
| Encoding: | UTF-8 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | stats, doParallel | 
| RoxygenNote: | 7.1.2 | 
| NeedsCompilation: | no | 
| Packaged: | 2022-05-09 20:15:25 UTC; brendan | 
| Author: | Brendan Matthew Galdo | 
| Maintainer: | Brendan Matthew Galdo <Brendan.m.galdo@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2022-05-10 16:40:02 UTC | 
GetAlgoParams
Description
Get control parameters for optim_SQGDE function.
Usage
GetAlgoParams(
  n_params,
  n_particles = NULL,
  n_diff = 2,
  n_iter = 1000,
  init_sd = 0.01,
  init_center = 0,
  n_cores_use = 1,
  step_size = NULL,
  jitter_size = 1e-06,
  crossover_rate = 1,
  parallel_type = "none",
  return_trace = FALSE,
  thin = 1,
  purify = Inf,
  adapt_scheme = NULL,
  give_up_init = 100,
  stop_check = 10,
  stop_tol = 1e-04,
  converge_crit = "stdev"
)
Arguments
| n_params | The number of parameters estimated/optimized, this integer value NEEDS to be specified. | 
| n_particles | The number of particles (population size), 3*n_params is the default value. | 
| n_diff | The number of mutually exclusive vector pairs to stochastically approximate the gradient. | 
| n_iter | The number of iterations to run the algorithm, 1000 is default. | 
| init_sd | A positive scalar or n_params-dimensional numeric vector, determines the standard deviation of the Gaussian initialization distribution. The default value is 0.01. | 
| init_center | A scalar or n_params-dimensional numeric vector, determines the mean of the Gaussian initialization distribution. The default value is 0. | 
| n_cores_use | An integer specifying the number of cores used when using parallelization. The default value is 1. | 
| step_size | A positive scalar, jump size or "F" in the DE crossover step notation. The default value is 2.38/sqrt(2*n_params). | 
| jitter_size | A positive scalar that determines the jitter (noise) size. Noise is added during adaption step from Uniform(-jitter_size,jitter_size) distribution. 1e-6 is the default value. Set to 0 to turn off jitter. | 
| crossover_rate | A numeric scalar on the interval (0,1]. Determines the probability a parameter on a chain is updated on a given crossover step, sampled from a Bernoulli distribution. The default value is 1. | 
| parallel_type | A string specifying parallelization type. 'none','FORK', or 'PSOCK' are valid values. 'none' is default value. 'FORK' does not work with Windows OS. | 
| return_trace | A boolean, if true, the function returns particle trajectories. This is helpful for assessing convergence or debugging model code. The trace will be an iteration/thin $x$ n_particles $x$ n_params array containing parameter values and an iteration/thin $x$ n_particles array containing particle weights. | 
| thin | A positive integer. Only every 'thin'-th iteration will be stored in memory. The default value is 1. Increasing thin will reduce the memory required when running the algorithim for longer. | 
| purify | A positive integer. On every 'purify'-th iteration the particle weights are recomputed. This is useful if the objective function is stochastic/noisy. If the objective function is deterministic, this computation is redundant. Purify is set to Inf by default, disabling it. | 
| adapt_scheme | A string that must be 'rand','current', or 'best' that determines the DE adaption scheme/strategy. 'rand' uses rand/1/bin DE-like scheme where a random particle and the particle-based quasi-gradient approximation are used to generate proposal updates for a given particle. 'current' uses current/1/bin, and 'best' uses best/1/bin which follow an analogous adaption scheme to rand. 'rand' is the default value. | 
| give_up_init | An integer for how many failed initialization attempts before stopping the optimization routine. 100 is the default value. | 
| stop_check | An integer for how often to check the convergence criterion. The default is 10 iterations. | 
| stop_tol | A convergence metric must be less than value to be labeled as converged. The default is 1e-4. | 
| converge_crit | A string denoting the convergence metric used, valid metrics are 'stdev' (standard deviation of population weight in the last stop_check iterations) and 'percent' (percent improvement in median particle weight in the last stop_check iterations). 'stdev' is the default. | 
Value
A list of control parameters for the optim_SQGDE function.
optim_SQGDE
Description
Runs Stochastic Quasi-Gradient Differential Evolution (SQG-DE; Sala, Baldanzini, and Pierini, 2018) to minimize an objective function f(x). To maximize a function f(x), simply pass g(x)=-f(x) to ObjFun argument.
Usage
optim_SQGDE(ObjFun, control_params = GetAlgoParams(), ...)
Arguments
| ObjFun | A scalar-returning function to minimize whose first argument is a real-valued n_params-dimensional vector. | 
| control_params | control parameters for SQG-DE algo. see  | 
| ... | additional arguments to pass ObjFun. | 
Value
list containing solution and it's corresponding weight (i.e. f(solution)).
Examples
##############
# Maximum Likelihood Example
##############
# simulate from model
dataExample=matrix(rnorm(1000,c(-1,1,0,1),c(1,1,1,1)),ncol=4,byrow = TRUE)
# list parameter names
param_names_example=c("mu_1","mu_2","mu_3","mu_4")
# negative log likelihood
ExampleObjFun=function(x,data,param_names){
  out=0
  names(x) <- param_names
  # log likelihoods
  out=out+sum(dnorm(data[,1],x["mu_1"],sd=1,log=TRUE))
  out=out+sum(dnorm(data[,2],x["mu_2"],sd=1,log=TRUE))
  out=out+sum(dnorm(data[,3],x["mu_3"],sd=1,log=TRUE))
  out=out+sum(dnorm(data[,4],x["mu_4"],sd=1,log=TRUE))
  return(out*-1)
}
########################
# run optimization
out <- optim_SQGDE(ObjFun = ExampleObjFun,
                   control_params = GetAlgoParams(n_params = length(param_names_example),
                                             n_iter = 250,
                                              n_particles = 12,
                                              n_diff = 2,
                                              return_trace = TRUE),
                   data = dataExample,
                   param_names = param_names_example)
old_par <- par() # save graphic state for user
# plot particle trajectory
par(mfrow=c(2,2))
matplot(out$particles_trace[,,1],type='l')
matplot(out$particles_trace[,,2],type='l')
matplot(out$particles_trace[,,3],type='l')
matplot(out$particles_trace[,,4],type='l')
#SQG DE solution
out$solution
#analytic solution
apply(dataExample, 2, mean)
par(old_par) # restore user graphic state