| Type: | Package | 
| Title: | Visualization of a Correlation Matrix using 'ggplot2' | 
| Version: | 0.1.4.1 | 
| Description: | The 'ggcorrplot' package can be used to visualize easily a correlation matrix using 'ggplot2'. It provides a solution for reordering the correlation matrix and displays the significance level on the plot. It also includes a function for computing a matrix of correlation p-values. | 
| License: | GPL-2 | 
| URL: | http://www.sthda.com/english/wiki/ggcorrplot-visualization-of-a-correlation-matrix-using-ggplot2 | 
| BugReports: | https://github.com/kassambara/ggcorrplot/issues | 
| Depends: | R (≥ 3.3), ggplot2 (≥ 3.3.6) | 
| Imports: | reshape2, stats | 
| Suggests: | testthat (≥ 3.0.0), knitr, spelling, vdiffr (≥ 1.0.0) | 
| Encoding: | UTF-8 | 
| Language: | en-US | 
| RoxygenNote: | 7.1.0 | 
| Config/testthat/edition: | 3 | 
| NeedsCompilation: | no | 
| Packaged: | 2023-09-05 15:45:33 UTC; hornik | 
| Author: | Alboukadel Kassambara [aut, cre],
  Indrajeet Patil | 
| Maintainer: | Alboukadel Kassambara <alboukadel.kassambara@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2023-09-05 15:50:48 UTC | 
Visualization of a correlation matrix using ggplot2
Description
- ggcorrplot(): A graphical display of a correlation matrix using ggplot2. 
- cor_pmat(): Compute a correlation matrix p-values. 
Usage
ggcorrplot(
  corr,
  method = c("square", "circle"),
  type = c("full", "lower", "upper"),
  ggtheme = ggplot2::theme_minimal,
  title = "",
  show.legend = TRUE,
  legend.title = "Corr",
  show.diag = NULL,
  colors = c("blue", "white", "red"),
  outline.color = "gray",
  hc.order = FALSE,
  hc.method = "complete",
  lab = FALSE,
  lab_col = "black",
  lab_size = 4,
  p.mat = NULL,
  sig.level = 0.05,
  insig = c("pch", "blank"),
  pch = 4,
  pch.col = "black",
  pch.cex = 5,
  tl.cex = 12,
  tl.col = "black",
  tl.srt = 45,
  digits = 2,
  as.is = FALSE
)
cor_pmat(x, ...)
Arguments
| corr | the correlation matrix to visualize | 
| method | character, the visualization method of correlation matrix to be used. Allowed values are "square" (default), "circle". | 
| type | character, "full" (default), "lower" or "upper" display. | 
| ggtheme | ggplot2 function or theme object. Default value is 'theme_minimal'. Allowed values are the official ggplot2 themes including theme_gray, theme_bw, theme_minimal, theme_classic, theme_void, .... Theme objects are also allowed (e.g., 'theme_classic()'). | 
| title | character, title of the graph. | 
| show.legend | logical, if TRUE the legend is displayed. | 
| legend.title | a character string for the legend title. lower triangular, upper triangular or full matrix. | 
| show.diag | NULL or logical, whether display the correlation
coefficients on the principal diagonal. If  | 
| colors | a vector of 3 colors for low, mid and high correlation values. | 
| outline.color | the outline color of square or circle. Default value is "gray". | 
| hc.order | logical value. If TRUE, correlation matrix will be hc.ordered using hclust function. | 
| hc.method | the agglomeration method to be used in hclust (see ?hclust). | 
| lab | logical value. If TRUE, add correlation coefficient on the plot. | 
| lab_col,lab_size | size and color to be used for the correlation coefficient labels. used when lab = TRUE. | 
| p.mat | matrix of p-value. If NULL, arguments sig.level, insig, pch, pch.col, pch.cex is invalid. | 
| sig.level | significant level, if the p-value in p-mat is bigger than sig.level, then the corresponding correlation coefficient is regarded as insignificant. | 
| insig | character, specialized insignificant correlation coefficients, "pch" (default), "blank". If "blank", wipe away the corresponding glyphs; if "pch", add characters (see pch for details) on corresponding glyphs. | 
| pch | add character on the glyphs of insignificant correlation coefficients (only valid when insig is "pch"). Default value is 4. | 
| pch.col,pch.cex | the color and the cex (size) of pch (only valid when insig is "pch"). | 
| tl.cex,tl.col,tl.srt | the size, the color and the string rotation of text label (variable names). | 
| digits | Decides the number of decimal digits to be displayed (Default: '2'). | 
| as.is | A logical passed to  | 
| x | numeric matrix or data frame | 
| ... | other arguments to be passed to the function cor.test. | 
Value
- ggcorrplot(): Returns a ggplot2 
- cor_pmat(): Returns a matrix containing the p-values of correlations 
Examples
# Compute a correlation matrix
data(mtcars)
corr <- round(cor(mtcars), 1)
corr
# Compute a matrix of correlation p-values
p.mat <- cor_pmat(mtcars)
p.mat
# Visualize the correlation matrix
# --------------------------------
# method = "square" or "circle"
ggcorrplot(corr)
ggcorrplot(corr, method = "circle")
# Reordering the correlation matrix
# --------------------------------
# using hierarchical clustering
ggcorrplot(corr, hc.order = TRUE, outline.color = "white")
# Types of correlogram layout
# --------------------------------
# Get the lower triangle
ggcorrplot(corr,
  hc.order = TRUE, type = "lower",
  outline.color = "white"
)
# Get the upeper triangle
ggcorrplot(corr,
  hc.order = TRUE, type = "upper",
  outline.color = "white"
)
# Change colors and theme
# --------------------------------
# Argument colors
ggcorrplot(corr,
  hc.order = TRUE, type = "lower",
  outline.color = "white",
  ggtheme = ggplot2::theme_gray,
  colors = c("#6D9EC1", "white", "#E46726")
)
# Add correlation coefficients
# --------------------------------
# argument lab = TRUE
ggcorrplot(corr,
  hc.order = TRUE, type = "lower",
  lab = TRUE,
  ggtheme = ggplot2::theme_dark(),
)
# Add correlation significance level
# --------------------------------
# Argument p.mat
# Barring the no significant coefficient
ggcorrplot(corr,
  hc.order = TRUE,
  type = "lower", p.mat = p.mat
)
# Leave blank on no significant coefficient
ggcorrplot(corr,
  p.mat = p.mat, hc.order = TRUE,
  type = "lower", insig = "blank"
)
# Changing number of digits for correlation coeffcient
# --------------------------------
ggcorrplot(cor(mtcars),
  type = "lower",
  insig = "blank",
  lab = TRUE,
  digits = 3
)