| Title: | Kriging Method for Spatial Functional Data | 
| Version: | 0.1.1 | 
| Maintainer: | Gilberto Sassi <sassi.pereira.gilberto@gmail.com> | 
| Description: | A Kriging method for functional datasets with spatial dependency. This functional Kriging method avoids the need to estimate the trace-variogram, and the curve is estimated by minimizing a quadratic form. The curves in the functional dataset are smoothed using Fourier series. The functional Kriging of this package is a modification of the method proposed by Giraldo (2011) <doi:10.1007/s10651-010-0143-y>. | 
| Imports: | numDeriv, stats, Rcpp | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.1.2 | 
| URL: | https://github.com/gilberto-sassi/geoFKF | 
| BugReports: | https://github.com/gilberto-sassi/geoFKF/issues | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| NeedsCompilation: | yes | 
| Packaged: | 2022-08-12 19:06:56 UTC; gilberto | 
| Author: | Gilberto Sassi [aut, cre] | 
| Repository: | CRAN | 
| Date/Publication: | 2022-08-12 19:50:02 UTC | 
Computing coefficients Fourier.
Description
This function computes minimum square estimates for Fourier coefficients.
Usage
coef_fourier(f, m)
Arguments
| f | A time series to be smoothed. | 
| m | Order of the Fourier polynomial. Default value is computed using the Sturge's rule. | 
Value
A vector with the fourier coefficients.
Examples
x <- seq(from = -pi, to = pi, by = 0.01)
y <- x^2 + rnorm(length(x), sd = 0.1)
v_coef <- coef_fourier(y)
Temperature datasets from Canada.
Description
Temperature time series from 35 weather stations from Canada.  This dataset
is a classic one and was used in famous package fda. We have made a few
changes in this dataset.
Usage
data("datasetCanada")
Format
A list with two entries: m_cood and m_data.
- m_coord
- a - tibblewith latitude, logitude and the name of stations.
- m_data
- a - tibblewhere each column is the time series from a weather station.
Source
the CanadianWeather dataset from the R package
fda.
Smoothed curve in Fourier Series.
Description
This function computes the smoothed curve using Fourier coefficients.
Usage
fourier_b(coef, x)
Arguments
| coef | Fourier coefficients. | 
| x | a time series to evaluate the smoothed curve. | 
Value
a time series with the smoothed curve.
Examples
v_coef <- rnorm(23)
fourier_b(v_coef)
Kriging method for Spatial Functional Data.
Description
geo_fkf implements the kriging method for spatial functional datasets.
Usage
geo_fkf(m_data, m_coord, new_loc, p, t = seq(from = -pi, to = pi, by = 0.01))
Arguments
| m_data | a tibble where each column or variable is data from a station | 
| m_coord | a tibble with two columns: latitude and longitude | 
| new_loc | a tible with one observation, where the columns or variables are latitude and longitude | 
| p | order in the Fourier Polynomial | 
| t | a time series with values belonging to  | 
Value
a list with three entries: estimates, Theta and
cov_params
- estimates
- the estimate curve 
- Theta
- weights (matrices) of the linear combination 
- cov_params
- estimate - \sigma^2,- \phiand- \rho
Examples
data("datasetCanada")
m_data <- as.matrix(datasetCanada$m_data)
m_coord <- as.matrix(datasetCanada$m_coord[, 1:2])
pos <- sample.int(nrow(m_coord), 1)
log_pos <- !(seq_len(nrow(m_coord)) %in% pos)
new_loc <- m_coord[pos, ]
m_coord <- m_coord[log_pos, ]
m_data <- m_data[, log_pos]
geo_fkf(m_data, m_coord, new_loc)
Log likelihood function for multivariate normal with spatial dependency.
Description
Log likelihood function for multivariate normal with spatial dependency.
Arguments
| mCoef | coefficient matrix. Each column is the coefficient from a curve; | 
| mDist | distance matris; | 
| s2 | variance from the covariance model; | 
| phi | variance from the covariance model; | 
| rho | variance from the covariance model; | 
Maximum likelihood estimate for \sigma^2, \phi and \rho.
Description
This function maximum likelihood estimate for \sigma^2, \phi
and \rho in the random field model for the covariance.
Usage
log_lik_rf(m_coef, m_coord)
Arguments
| m_coef | Matrix where each column is an observed vector | 
| m_coord | Matrix where each observation contains the latitude and longitude | 
Value
Return a list with
- par
- A vector with the estimates of - \sigma^2,- \phiand- \rho.
- m_cov
- A matrix of covariances of the estimates. 
Examples
data("datasetCanada")
m_data <- as.matrix(datasetCanada$m_data)
m_coord <- as.matrix(datasetCanada$m_coord[, 1:2])
p <- ceiling(1 + log2(nrow(m_data)))
m_coef <- sapply(seq_len(nrow(m_coord)), function(i) {
    coef_fourier(m_data[, i], p)
})
log_lik_rf(m_coef, m_coord)