gWQS: Generalized Weighted Quantile Sum Regression
Fits Weighted Quantile Sum (WQS) regression  (Carrico et al. (2014) <doi:10.1007/s13253-014-0180-3>), a random subset implementation of WQS (Curtin et al. (2019) <doi:10.1080/03610918.2019.1577971>), a repeated holdout validation WQS (Tanner et al. (2019) <doi:10.1016/j.mex.2019.11.008>) and a WQS with 2 indices (Renzetti et al. (2023) <doi:10.3389/fpubh.2023.1289579>) for continuous, binomial, multinomial, Poisson, quasi-Poisson and negative binomial outcomes.
| Version: | 3.0.5 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | ggplot2, stats, broom, rlist, MASS, reshape2, plotROC, knitr, kableExtra, nnet, future, future.apply, pscl, ggrepel, cowplot, Matrix, car, utils, bookdown | 
| Suggests: | markdown | 
| Published: | 2023-11-16 | 
| DOI: | 10.32614/CRAN.package.gWQS | 
| Author: | Stefano Renzetti [aut, cre],
  Paul Curtin [aut],
  Allan C Just [ctb],
  Ghalib Bello [ctb],
  Chris Gennings [aut] | 
| Maintainer: | Stefano Renzetti  <stefano.renzetti88 at gmail.com> | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| NeedsCompilation: | no | 
| Materials: | README | 
| CRAN checks: | gWQS results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=gWQS
to link to this page.