{flexFitR}

CRAN status

{flexFitR} is an R package designed for efficient modeling and analysis of large and complex datasets. It offers powerful tools for parameter estimation, model fitting, and visualization, leveraging the {optimx} package for optimization and the {future} package for parallel processing.

Installation

Install released version from CRAN:

install.packages("flexFitR")

You can also install the development version of flexFitR from GitHub with:

# install.packages("devtools")
devtools::install_github("AparicioJohan/flexFitR")

Features

Example

Here’s a simple example to get you started with {flexFitR}. This example demonstrates fitting a piecewise regression model:

library(flexFitR)

dt <- data.frame(
  time = c(0, 29, 36, 42, 56, 76, 92, 100, 108),
  variable = c(0, 0, 0.67, 15.11, 77.38, 99.81, 99.81, 99.81, 99.81)
)
plot(explorer(dt, time, variable), type = "xy")

plot xy

fn_linear_sat <- function(t, t1 = 45, t2 = 80, k = 0.9) {
  if (t < t1) {
    y <- 0
  } else if (t >= t1 && t <= t2) {
    y <- k / (t2 - t1) * (t - t1)
  } else {
    y <- k
  }
  return(y)
}
# Fitting a linear saturation function
mod_1 <- dt |>
  modeler(
    x = time,
    y = variable,
    fn = "fn_linear_sat",
    parameters = c(t1 = 45, t2 = 80, k = 90)
  )
print(mod_1)

Call:
variable ~ fn_linear_sat(time, t1, t2, k) 

Residuals (Standardized):
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.0000  0.0000  0.0000  0.2722  0.0000  2.4495 

Optimization Results `head()`:
 uid   t1 t2    k   sse
   1 38.6 61 99.8 0.449

Metrics:
 Groups      Timing Convergence Iterations
      1 0.6083 secs        100%   511 (id)
# Auto plot
plot(mod_1)

plot fin

# Coefficients
coef(mod_1)
# A tibble: 3 × 7
    uid fn_name       coefficient solution std.error `t value` `Pr(>|t|)`
  <dbl> <chr>         <chr>          <dbl>     <dbl>     <dbl>      <dbl>
1     1 fn_linear_sat t1              38.6    0.0779      496.   4.54e-15
2     1 fn_linear_sat t2              61.0    0.0918      665.   7.82e-16
3     1 fn_linear_sat k               99.8    0.137       730.   4.47e-16
# Variance-Covariance Matrix
vcov(mod_1)
$`1`
              t1           t2            k
t1  6.061705e-03 -0.002940001 1.877072e-07
t2 -2.940001e-03  0.008431400 4.204939e-03
k   1.877072e-07  0.004204939 1.870426e-02
attr(,"fn_name")
[1] "fn_linear_sat"
# Making predictions
predict(mod_1, x = 45)
# A tibble: 1 × 5
    uid fn_name       x_new predicted.value std.error
  <dbl> <chr>         <dbl>           <dbl>     <dbl>
1     1 fn_linear_sat    45            28.5     0.223

Documentation

For detailed documentation and examples, visit flexFitR

Contributing

Contributions to flexFitR are welcome! If you’d like to contribute, please fork the repository and submit a pull request. For significant changes, please open an issue first to discuss your ideas.

Code of Conduct

Please note that the flexFitR project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

License

flexFitR is licensed under the MIT License. See the LICENSE file for more details.