Package ‘cryptoQuotes’

January 8, 2024

Title A Streamlined Access to OHLC-v Market Data and Sentiment
Indicators

Version 1.2.1

Description This high-level API client offers a streamlined access to comprehensive cryptocur-
rency market data from major exchanges.
It features robust OHLC-V (Open, High, Low, Close, Volume) candle data with flexible granu-
larity, ranging from seconds to months, and includes insightful sentiment indicators.
By aggregating data directly from leading exchanges, this package ensures a reliable and sta-
ble flow of market information, eliminating the need for complex, low-level API interactions.

License GPL (>=2)
Encoding UTF-8
RoxygenNote 7.2.3

Suggests data.table, knitr, quantmod, rmarkdown, testthat (>= 3.0.0),
tidyverse

Config/testthat/edition 3

Imports cli, curl (>=5.1.0), httr2, lifecycle, magrittr (>= 2.0.3),
plotly (>=4.10.2), RColorBrewer, rlang (>=1.1.1), TTR, xts
(>=0.13.1), zoo (>= 1.8-12)

Depends R (>=4.0.0)
LazyData true
VignetteBuilder knitr

URL https://serkor1.github.io/cryptoQuotes/,
https://github.com/serkor1/cryptoQuotes

BugReports https://github.com/serkorl1/cryptoQuotes/issues
NeedsCompilation no

Author Serkan Korkmaz [cre, aut, ctb, cph]
(<https://orcid.org/0000-0002-5052-0982>),
Jonas Cuzulan Hirani [ctb] (<https://orcid.org/0000-0002-9512-1993>)

Maintainer Serkan Korkmaz <serkori@duck.com>
Repository CRAN
Date/Publication 2024-01-08 21:10:02 UTC

https://serkor1.github.io/cryptoQuotes/
https://github.com/serkor1/cryptoQuotes
https://github.com/serkor1/cryptoQuotes/issues
https://orcid.org/0000-0002-5052-0982
https://orcid.org/0000-0002-9512-1993

2 addBBands
R topics documented:
addBBands 2
addEvents e e 3
addFGIndex e 5
addLSRatio 7
addMA . . e 9
addMACD L e 10
addRST 11
addVolume e 13
ATOMUSDT e 14
availableExchanges L 15
availableIntervals 15
availableTickers 16
BTCUSDT 17
calibrateWindow 18
chart L 20
DOGEUSDT o e 21
FGIndex e 22
getFGIndex e 22
getLSRatio L 24
getQUOLE L e e e 26
kline 27
ohlc e 28
removeBoundo 29
splitWindow L. L L e 31
Index 34
addBBands Add Bollinger Bands to the chart
Description
[Experimental]
Bollinger Bands provide a visual representation of price volatility and are widely used by traders

and i

nvestors to assess potential price reversals and trade opportunities in various financial markets,

including stocks, forex, and commodities.
Usage
addBBands(chart, cols = c("High", "Low", "Close"), ...)
Arguments
chart akline() or ohlc() chart
cols a vector of column names used to calculate the Bollinger Bands Default values

High, Low and Close
See TTR: :BBands ()

addEvents 3

Value

Invisbly returns a plotly object.

See Also

Other chart indicators: addEvents(), addFGIndex (), addLSRatio(), addMACD(), addMA(), addRSI(),
addVolume(), chart()

Examples

script: scr_charting

date: 2023-10-25

author: Serkan Korkmaz, serkoril@duck.com
objective: Charting in general

script start;

library
library(cryptoQuotes)

charting klines
with various indicators

chart(
chart = kline(
ATOMUSDT

) %>% addVolume() %>% addMA(
FUN = TTR::SMA,
n=7
) %>% addMA(
FUN = TTR::SMA,
n =14
) %%
addBBands() %>%
addMACD() %>%
addRSI()

script end;

addEvents add eventlines to the chart

Description

[Experimental]

Common types of event indicators include earnings release dates, dividend payouts, central bank
interest rate decisions, chart pattern breakouts, and geopolitical events like elections or geopolitical
tensions. The choice of event indicators depends on the trader’s or analyst’s specific objectives and
the factors they believe are most relevant to the asset’s price movements.

4 addEvents

Usage

addEvents(chart, event)

Arguments

chart akline() or ohlc() chart

event a data.frame with index, event and colors.
Value

Invisbly returns a plotly object.

Note
The eventlines are drawn using plotly: :layout (), so all existing eventlines will be replaced each
time you call addEvents().

See Also

Other chart indicators: addBBands (), addFGIndex (), addLSRatio(), addMACD(), addMA(), addRSI(),
addVolume(), chart()

Examples
script: scr_addEvents
date: 2023-12-07
author: Serkan Korkmaz, serkoril@duck.com
objective: Describe the usage
of addEvents
script start;

laod library
library(cryptoQuotes)

1) Generate random events
of buys and sells and convert
to data.frame

Note: tibbles, data.tables are also supported

but only base R is shown here to avoid

too many dependencies

set.seed(1903)

event_data <- ATOMUSDT[
sample(1:nrow(ATOMUSDT), size = 2)

1

#
#
#
#
#
#
#

1.1) Extract the index

from the event data

index <- zoo::index(
event_data

)

addFGlIndex 5

1.2) Convert the coredata

into a data.frame

event_data <- as.data.frame(
z00: :coredata(event_data)

)

1.3) Add the index into the data.frame
case insensitive
event_data$index <- index

1.4) add events to the data.
here we use Buys and Sells.
event_data$event <- rep(
x = c('Buy', 'Sell'),
lenght.out = nrow(event_data)

)

1.5) add colors based
on the event; here buy is colored
darkgrey, and if the position is closed
with profit the color is green
event_data$color <- ifelse(
event_data$event == 'Buy’,
yes = 'darkgrey',
no = ifelse(
subset(event_data, event == 'Buy')$Close < subset(event_data, event == 'Sell')$Close,
yes = 'green',
no = 'red'
)
)

1.6) modify the event to add

closing price at each event

event_data$event <- paste@(
event_data$event, ' @', event_data$Close

)

2) Chart the the klines
and add the buy and sell events

chart(
chart = kline(
ATOMUSDT

) %>% addEvents(
event = event_data

)
)

script end;

addFGIndex Chart the Fear and Greed Index

6 addFGlIndex

Description

[Experimental]

The fear and greed index is a market sentiment indicator that measures investor emotions to gauge
whether they are generally fearful (indicating potential selling pressure) or greedy (indicating po-
tential buying enthusiasm)

Usage
addFGIndex(chart, FGI)

Arguments

chart akline() or ohlc() chart

FGI The Fear and Greed Index created by getFGIndex()
Details

The Fear and Greed Index goes from 0-100, and can be classifed as follows

¢ 0-24, Extreme Fear

e 25-44, Fear

e 45-55, Neutral

56-75, Greed

76-100, Extreme Greed

Value

Invisbly returns a plotly object.

See Also

Other chart indicators: addBBands (), addEvents(), addLSRatio(), addMACD(), addMA (), addRSI(),
addVolume(), chart()

Examples
script: Fear and Greed Index
date: 2023-12-26
author: Serkan Korkmaz, serkorl@duck.com
objective: Retrieve and Plot the
index
script start;

1) get the fear and greed index
over time
FGI <- try(
cryptoQuotes: :getFGIndex ()
)

addLSRatio

2) get BTCUSDT-pair on
daily
BTCUSDT <- try(
cryptoQuotes: :getQuote(
ticker = 'BTCUSDT',
interval = '1d',
futures = FALSE
)
)

3) chart the klines

of BTCUSDT with

the Fear and Greed Index

if (!inherits(BTCUSDT, 'try-error') & !inherits(FGI, 'try-error')) {

cryptoQuotes: :chart(
chart = cryptoQuotes: :kline(
BTCUSDT
) %>% cryptoQuotes: :addFGIndex(
FGI = FGI

)7
slider = FALSE

}

script end;

addLSRatio Chart the long-short ratios

Description

[Experimental]

The long-short ratio is a market sentiment indicator on expected price movement.

Usage

addLSRatio(chart, LSR)

Arguments

chart akline() orohlc() chart

LSR The Fear and Greed Index created by getLSRatio()
Value

Invisbly returns a plotly object.

8 addLSRatio

See Also

Other chart indicators: addBBands (), addEvents(), addFGIndex (), addMACD(), addMA (), addRSI(),
addVolume(), chart()

Examples

Example on loading
long-short ratio

for the last days

on the 15 minute candle
wrapped in try to avoid
failure on Github

T od o o

1) long-short ratio
on BTCUSDT pair
BTC_LSR <- try(
expr = cryptoQuotes::getLSRatio(
ticker = 'BTCUSDT',

interval = '15m',
from = Sys.Date() - 1,
to = Sys.Date()

),

silent = TRUE

2) BTCSDT in same period
as the long-short ratio;
BTCUSDT <- try(
cryptoQuotes: :getQuote(
ticker = 'BTCUSDT',
futures = TRUE,

interval = '"15m',
from = Sys.Date() - 1,
to = Sys.Date()

)
)

if (!inherits(x = BTC_LSR, what = 'try-error') & !inherits(x = BTCUSDT, what = "try-error")) {

3) head the data
and display contents
head(
BTC_LSR
)

4) plot BTCUSDT-pair
with long-short ratio
cryptoQuotes: :chart(
chart = cryptoQuotes::kline(
BTCUSDT
) %>% cryptoQuotes: :addLSRatio(
LSR = BTC_LSR

addMA 9

}

end of scrtipt;

addMA Add various Moving Average indicators to the chart

Description

[Experimental]

Moving averages are versatile tools used by traders and analysts in various timeframes, from short-
term intraday trading to long-term investing. They help smooth out noise in price data and provide
valuable information for decision-making in financial markets.

Usage

addMA(chart, FUN = TTR::SMA, ...)

Arguments
chart akline() or ohlc() chart
FUN A named function calculating MAs. Has to be explicitly called. See TTR: : SMA()
for more information.
See TTR: : SMA()
Details
The function supports all moving averages calculated by the TTR library. See TTR: : SMA() for more
information.
Value

Invisbly returns a plotly object.

See Also

Other chart indicators: addBBands (), addEvents(), addFGIndex(), addLSRatio(), addMACD(),
addRSI(), addVolume(), chart()

10 addMACD

Examples

script: scr_charting

date: 2023-10-25

author: Serkan Korkmaz, serkorl@duck.com
objective: Charting in general

script start;

o o

library
library(cryptoQuotes)

charting klines
with various indicators

chart(
chart = kline(
ATOMUSDT

) %>% addVolume() %>% addMA(
FUN = TTR::SMA,
n=17
) %>% addMA(
FUN = TTR::SMA,
n =14
) %%
addBBands() %>%
addMACD() %>%
addRSI()

script end;

addMACD Add MACD indicators to the chart

Description

[Experimental]

Traders and investors use the MACD indicator to identify trend changes, potential reversals, and
overbought or oversold conditions in the market. It is a versatile tool that can be applied to various
timeframes and asset classes, making it a valuable part of technical analysis for many traders.

Usage
addMACD(chart, ...)
Arguments
chart akline() or ohlc() chart

See TTR: :MACD()

addRSI 11

Value

Invisbly returns a plotly object.

See Also

Other chart indicators: addBBands(), addEvents(), addFGIndex(), addLSRatio(), addMA(),
addRSI(), addVolume(), chart()

Examples

script: scr_charting

date: 2023-10-25

author: Serkan Korkmaz, serkorl@duck.com
objective: Charting in general

script start;

library
library(cryptoQuotes)

charting klines
with various indicators

chart(
chart = kline(
ATOMUSDT

) %>% addVolume() %>% addMA(
FUN = TTR::SMA,
n=17
) %>% addMA(
FUN = TTR::SMA,
n =14
) %%
addBBands() %>%
addMACD() %>%
addRSI()

script end;

addRSI Add RSI indicators to your chart

Description

[Experimental]

The RSI can be customized with different look-back periods to suit various trading strategies and
timeframes. It is a valuable tool for assessing the momentum and relative strength of an asset,
helping traders make more informed decisions in financial markets.

12 addRSI

Usage
addRSI(chart, ...)
Arguments
chart akline() or ohlc() chart
See TTR: :RSI()
Value

Invisbly returns a plotly object.

See Also

Other chart indicators: addBBands(), addEvents(), addFGIndex(), addLSRatio(), addMACD(),
addMA (), addVolume(), chart()

Examples

script: scr_charting

date: 2023-10-25

author: Serkan Korkmaz, serkori@duck.com
objective: Charting in general

script start;

ER T T

library
library(cryptoQuotes)

charting klines
with various indicators

chart(
chart = kline(
ATOMUSDT

) %>% addVolume() %>% addMA(
FUN = TTR::SMA,
n=7
) %>% addMA(
FUN = TTR::SMA,
n =14
) 5%
addBBands() %>%
addMACD() %>%
addRSI()

script end;

addVolume 13

addVolume Add volume indicators to the chart

Description

[Experimental]

Volume indicators are technical analysis tools used to analyze trading volume, which represents the
number of shares or contracts traded in a financial market over a specific period of time. These
indicators provide valuable insights into the strength and significance of price movements.

Usage

addVolume(chart)
Arguments

chart akline() or ohlc() chart
Value

Invisbly returns a plotly object.

See Also

Other chart indicators: addBBands (), addEvents(), addFGIndex(), addLSRatio(), addMACD(),
addMA (), addRSI(), chart()

Examples

script: scr_charting

date: 2023-10-25

author: Serkan Korkmaz, serkoril@duck.com
objective: Charting in general

script start;

o o o

library
library(cryptoQuotes)

charting klines
with various indicators

chart(
chart = kline(
ATOMUSDT

) %>% addVolume() %>% addMA(
FUN = TTR::SMA,
n=17
) %>% addMA(
FUN = TTR::SMA,
n =14

14 ATOMUSDT

) %%
addBBands() %>%
addMACD() %>%
addRSI()

script end;

ATOMUSDT USDT denominated ATOMS with 15m intervals

Description

A xts object with 15m OHLCYV of USDT denominated ATOM with 97 rows and 5 columns, from
2023-01-01 to 2023-01-02.

Usage

ATOMUSDT

Format

An object of class xts (inherits from zoo) with 97 rows and 5 columns.

Details
Open Opening price
High Highest price
Low Lowest price
Close Closing price

Volume Volume

See Also

Other data: BTCUSDT, DOGEUSDT, FGIndex

availableExchanges

15

availableExchanges Get available exchanges

Description

This function returns all available exchanges as a message in the console.

Usage

availableExchanges()

Value

Invisbly returns a character vector.

Examples

script:

date: 2023-10-06

author: Serkan Korkmaz, serkoril@duck.com
objective:

script start;

return all
available exchanges

cryptoQuotes: :availableExchanges()

script end;

availablelIntervals See all available intervals for the futures and spot markets on the de-
sired exchange

Description

This function shows all available intervals available from each exchange

Usage
availablelntervals(source = "binance”, futures = TRUE)
Arguments
source character vector of length one. Must be the name of the supported exchange

futures logical. TRUE by default. If FALSE, spot market are returned

16 availableTickers

Value

Invisbly returns a character vector.

Examples

script:

date: 2023-10-06

author: Serkan Korkmaz, serkoril@duck.com
objective:

script start;

available intervals
at kucoin futures market
cryptoQuotes: :availableIntervals(
source = 'kucoin',
futures = TRUE

available intervals
at kraken spot market
cryptoQuotes: :availableIntervals(
source = 'kraken',
futures = FALSE
)

script end;

availableTickers Get all the available tickers on the desired exchange and market

Description

This function returns all available pairs on the exchanges.

Usage
availableTickers(source = "binance”, futures = TRUE)
Arguments
source a character vector of length 1. The source of the API
futures a logical value. Default TRUE.
Value

Returns a character vector of length N equal to the tradable tickers

BTCUSDT 17

Examples

available tickers
in Binance spot market

head(
try(
cryptoQuotes: :availableTickers(
source = 'binance',
futures = FALSE
)
)
)

available tickers
in Kraken futures market

head(
try(
cryptoQuotes: :availableTickers(
source = 'kraken',
futures = TRUE
)
)
)
BTCUSDT USDT denominated Bitcoin(BTC) with 1 week intervals
Description

A xts object with weekly OHLCV of USDT denominated Bitcoin with 99 rows and 5 columns,
from 2022-02-07 to 2023-12-25.

Usage
BTCUSDT

Format

An object of class xts (inherits from zoo) with 99 rows and 5 columns.

Details

Open Opening price
High Highest price
Low Lowest price
Close Closing price
Volume Volume

18 calibrateWindow

See Also
Other data: ATOMUSDT, DOGEUSDT, FGIndex

calibrateWindow calibrate the time window of a list of xts objects

Description

[Experimental]

This function is a high-level wrapper of do.call and lapply which modifies each xts object stored in
alist().

Usage
calibrateWindow(list, FUN, ...)
Arguments
list A list of xts objects.
FUN A function applied to each element of the list
optional arguments passed to FUN.
Value

Returns a xts object.

See Also

Other convinience: removeBound(), splitWindow()

Examples

script: scr_FUN

date: 2023-12-27

author: Serkan Korkmaz, serkorl@duck.com

objective: Demonstrate the use of the convinience
funtions

script start;

by default the Fear and Greed Index

is given daily. So to align these values

with, say, weekly candles it has to be aggregated
#

#

In this example the built-in data are used
1) check index of BTCUSDT and

the Fear and Greed Index
setequal(

calibrate Window

z00: : index (BTCUSDT),
z00: :index (FGIndex)

)

2) to align the indices,
we use the convincience functions
by splitting the FGI by the BTC index.
FGIndex <- splitWindow(
xts = FGIndex,
by = zoo::index(BTCUSDT),

Remove upper bounds of the

index to avoid overlap between

the dates.

#

This ensures that the FGI is split
according to start of each weekly
BTC candle

bounds = 'upper'

3) as splitWindow returns a list
it needs to passed into calibrateWindow
to ensure comparability
FGIndex <- calibrateWindow(
list = FGIndex,

As each element in the list can include

more than one row, each element needs to be aggregated
or summarised.

#

using xts::first gives the first element

of each list, along with its values

FUN = xts::first

3) check if candles aligns
accordingly
setequal(

z00: :index (BTCUSDT),

z00: :index (FGIndex)

)

As the dates are now aligned

and the Fear and Greed Index being summarised by

the first value, the Fear and Greed Index is the opening
Fear and Greed Index value, at each candle.

script end;

19

20 chart

chart Create an interactive financial chart

Description

[Stable]
Chart the kline() or ohlc() with optional indicators.

Usage

chart(chart, slider = TRUE)

Arguments

chart akline() or ohlc() chart with optional indicators.

slider A logical value. TRUE by default. Include a slider in the bottom of the chart.
Value

Returns a plotly object

See Also

Other chart indicators: addBBands (), addEvents(), addFGIndex(), addLSRatio(), addMACD(),
addMA (), addRSI(), addVolume()

Other charting: kline(), ohlc()

Examples

script: scr_charting

date: 2023-10-25

author: Serkan Korkmaz, serkori@duck.com
objective: Charting in general

script start;

* % o

library
library(cryptoQuotes)

charting klines
with various indicators

chart(
chart = kline(
ATOMUSDT

) %>% addVolume() %>% addMA(
FUN = TTR::SMA,
n=17

) %>% addMA(
FUN = TTR::SMA,

DOGEUSDT

n =14

) %>%
addBBands () %>%
addMACD() %>%
addRSI()

script end;

21

DOGEUSDT USDT denominated DOGECOIN in 1m intervals

Description

A xts object with Im OHLCYV of USDT denominated Dogecoin with 61 rows and 5 columns.

Usage

DOGEUSDT

Format

An object of class xts (inherits from zoo) with 61 rows and 5 columns.

Details
Open Opening price
High Highest price
Low Lowest price
Close Closing price

Volume Volume

See Also

Other data: ATOMUSDT, BTCUSDT, FGIndex

22 getFGIndex

FGIndex Fear and Greed Index Values

Description
A xts object with Fear and Greed Index value. It has 689 rows, and 1 colum. Extracted from
2022-02-07 to 2023-12-27

Usage

FGIndex

Format

An object of class xts (inherits from zoo) with 689 rows and 1 columns.

Details

FGI Daily Fear and Greed Index Value

See Also

Other data: ATOMUSDT, BTCUSDT, DOGEUSDT

getFGIndex Get the daily Fear and Greed Index for the cryptocurrency market

Description

The fear and greed index is a market sentiment indicator that measures investor emotions to gauge
whether they are generally fearful (indicating potential selling pressure) or greedy (indicating po-
tential buying enthusiasm)

Usage

getFGIndex(from = NULL, to = NULL)

Arguments
from An optional vector of length 1. Can be Sys.Date()-class, Sys.time()-class or
as.character() in %Y-%m-%d format.
to An optional vector of length 1. Can be Sys.Date()-class, Sys. time()-class or

as.character() in %Y-%m-%d format.

getFGIndex

Details

The Fear and Greed Index goes from 0-100, and can be classifed as follows

e (0-24, Extreme Fear
25-44, Fear

45-55, Neutral

56-75, Greed

76-100, Extreme Greed

Value

A xts object with the FGI daily score

See Also

Other sentiment: getLSRatio()

Examples

script: Fear and Greed Index

date: 2023-12-26

author: Serkan Korkmaz, serkori@duck.com
objective: Retrieve and Plot the

index

script start;

ETE S T

1) get the fear and greed index
over time
FGI <- try(
cryptoQuotes: :getFGIndex()
)

2) get BTCUSDT-pair on
daily
BTCUSDT <- try(
cryptoQuotes: :getQuote(
ticker = 'BTCUSDT',
interval = '1d',
futures = FALSE
)
)

3) chart the klines

of BTCUSDT with

the Fear and Greed Index

if (!inherits(BTCUSDT, 'try-error') & !inherits(FGI, 'try-error')) {

cryptoQuotes: :chart(
chart = cryptoQuotes: :kline(
BTCUSDT

23

24 getLSRatio

) %>% cryptoQuotes: :addFGIndex(
FGI = FGI

)7
slider = FALSE
)
3

script end;

getLSRatio Get long-short ratios for tickers

Description

The long-short ratio is a market sentiment indicator on expected price movement

Usage

getLSRatio(ticker, interval = "1d"”, top = FALSE, from = NULL, to = NULL)

Arguments
ticker A character vector of length 1. Uppercase. See availableTickers() for avail-
able tickers.
interval A character vector of length 1. See availableIntervals() for available inter-
vals.
top A logical vector. FALSE by default. If TRUE it returns the top traders Long-
Short ratios.
from An optional vector of length 1. Can be Sys.Date()-class, Sys. time()-class or
as.character() in %Y-%m-%d format.
to An optional vector of length 1. Can be Sys.Date()-class, Sys. time()-class or
as.character() in %Y-%m-%d format.
Details

Note! This endpoint only supports intervals between 5 minutes and 1 day.

Value

A xts object with the share of long and short position, and the ratio of the two. If no from and to are
supplied the 100 most recent pips are returned.

Author(s)

Jonas Cuzulan Hirani

getLSRatio 25

See Also

Other sentiment: getFGIndex()

Examples

Example on loading
long-short ratio

for the last days

on the 15 minute candle
wrapped in try to avoid
failure on Github

o o H W

1) long-short ratio
on BTCUSDT pair
BTC_LSR <- try(
expr = cryptoQuotes::getlLSRatio(
ticker = 'BTCUSDT',

interval = '15m',
from = Sys.Date() - 1,
to = Sys.Date()

),

silent = TRUE

)

2) BTCSDT in same period
as the long-short ratio;
BTCUSDT <- try(
cryptoQuotes: :getQuote(
ticker = 'BTCUSDT',
futures = TRUE,

interval = '15m',
from = Sys.Date() - 1,
to = Sys.Date()

)
)

if (!inherits(x = BTC_LSR, what = "try-error') & !inherits(x = BTCUSDT, what = "try-error”)) {

3) head the data
and display contents
head(
BTC_LSR
)

4) plot BTCUSDT-pair
with long-short ratio
cryptoQuotes: :chart(
chart = cryptoQuotes: :kline(
BTCUSDT
) %>% cryptoQuotes: :addLSRatio(
LSR = BTC_LSR
)

26

}

end of scrtipt;

getQuote

getQuote

Get a quote on a cryptopair from one of the supported exchanges

Description

Open, High, Low, Close, and Volume (OHLCV) quotes are essential pieces of information used to
analyze the price and trading activity of a financial asset over a specific time frame.

Usage
getQuote(
ticker,
source = 'binance',
futures = TRUE,
interval = '1d',
from = NULL,
to = NULL
)
Arguments
ticker A character vector of length 1. Uppercase. See availableTickers() for avail-
able tickers.
source A character vector of length 1. See availableExchanges() for available ex-
changes.
futures A logical value. Returns futures market if TRUE, spot market otherwise.
interval A character vector of length 1. See availableIntervals() for available inter-
vals.
from An optional vector of length 1. Can be Sys.Date()-class, Sys. time()-class or
as.character() in %Y-%m-%d format.
to An optional vector of length 1. Can be Sys.Date()-class, Sys. time()-class or
as.character () in %Y-%m-%d format.
Details

If only fromis provided 100 pips are returned up to Sys.time().

If only to is provided 100 pips up to the specified date is returned.

If from and to are both NULL 100 pips returned up to Sys.time()

kline 27

Value

an xts object with Open, High, Low, Close and Volume. If futures = TRUE the prices are last prices.

Examples

1) Load BTC spot
from Kucoin with 30 minute
intervals

BTC <- try(
cryptoQuotes: :getQuote(
ticker = 'BTC-USDT',
source = 'kucoin',
interval = '30m',
futures = FALSE,
from = Sys.Date() - 1
)
)

2) chart the spot price

using the chart

function

if (!linherits(BTC, 'try-error')){

cryptoQuotes: :chart(
chart = cryptoQuotes::kline(BTC) %>%

cryptoQuotes: :addVolume() %>%
cryptoQuotes: :addBBands ()

}

script end;

kline Chart the OHLC prices using candlesticks

Description

[Stable]

Candlestick charts are highly visual and provide a quick and intuitive way to assess market senti-
ment and price action. Traders and analysts use them in conjunction with other technical analysis
tools to make informed trading decisions. These charts are particularly useful for identifying key
support and resistance levels, trend changes, and potential entry and exit points in financial markets.

Usage

kline(quote, deficiency = FALSE, slider = TRUE)

28 ohlc

Arguments
quote A cryptoQuote in xts/zoo format.
deficiency Logical. FALSE by default, if TRUE color defiency compliant colors are used.
slider Logical. TRUE by default. If FALSE, no slider will be included.

Value

Invisbly returns a plotly object.

See Also

Other charting: chart(), ohlc()

ohlc chart quote using ohlc bars

Description

[Stable]

Traders and analysts use OHLC bar charts to analyze price action, identify trends, support and
resistance levels, and potential reversal patterns. They are especially useful for assessing the rela-
tionship between the opening and closing prices within a given time frame, which can offer insights
into market sentiment and potential future price movements.

Usage

ohlc(quote, deficiency = FALSE, slider = TRUE)

Arguments
quote A cryptoQuote in xts/zoo format.
deficiency Logical. FALSE by default, if TRUE color defiency compliant colors are used.
slider Logical. TRUE by default. If FALSE, no slider will be included.

Value

Invisbly returns a plotly object.

See Also

Other charting: chart(), kline()

removeBound 29

Examples

script: scr_charting

date: 2023-10-25

author: Serkan Korkmaz, serkorl@duck.com
objective: Charting in general

script start;

o o

library
library(cryptoQuotes)

charting klines
with various indicators

chart(
chart = kline(
ATOMUSDT

) %>% addVolume() %>% addMA(
FUN = TTR::SMA,
n=17
) %>% addMA(
FUN = TTR::SMA,
n =14
) %%
addBBands() %>%
addMACD() %>%
addRSI()

script end;

removeBound remove upper and lower bounds from an XTS object

Description

[Experimental]

The stats: :window()-function has inclusive upper and lower bounds, which in some cases is an
undesirable feature. This high level function removes the bounds if desired

Usage

removeBound(xts, bounds = c("upper"))

Arguments
xts A xts-object that needs its bounds modified.
bounds A character vector of length 1. Has to be one of c('upper', 'lower', 'both').

Defaults to Upper.

30

Value

Returns an xts-class object with its bounds removed.

See Also

Other convinience: calibrateWindow(), splitWindow()

Examples

#
#
#
#
#
#

#
#
#
#
#

#
#

script: scr_FUN

date: 2023-12-27

author: Serkan Korkmaz, serkori@duck.com
objective: Demonstrate the use of the convinience
funtions

script start;

by default the Fear and Greed Index
is given daily. So to align these values
with, say, weekly candles it has to be aggregated

In this example the built-in data are used

1) check index of BTCUSDT and
the Fear and Greed Index

setequal(

)

#
#
#

z00: :index (BTCUSDT),
z00: :index (FGIndex)

2) to align the indices,
we use the convincience functions
by splitting the FGI by the BTC index.

FGIndex <- splitWindow(

#
#
#

xts = FGIndex,
by = zo0o0::index(BTCUSDT),

Remove upper bounds of the

index to avoid overlap between

the dates.

#

This ensures that the FGI is split
according to start of each weekly
BTC candle

bounds = 'upper'

3) as splitWindow returns a list

it needs to passed into calibrateWindow
to ensure comparability

FGIndex <- calibrateWindow(

list = FGIndex,

removeBound

splitWindow 31

As each element in the list can include

more than one row, each element needs to be aggregated
or summarised.

#

using xts::first gives the first element

of each list, along with its values

FUN = xts::first

3) check if candles aligns
accordingly
setequal(

z00: :index(BTCUSDT),

z00: :index (FGIndex)

)

As the dates are now aligned

and the Fear and Greed Index being summarised by

the first value, the Fear and Greed Index is the opening
Fear and Greed Index value, at each candle.

script end;

splitWindow split xts object iteratively in lists of desired intervals

Description

[Experimental]

The splitWindow()-function is a high level wrapper of the stats: :window()-function which re-
stricts the intervals between the first and second index value iteratively

Usage

splitWindow(xts, by, bounds = "upper")

Arguments
xts A xts-object that needs needs to be split.
by A reference zoo: : index ()-object, to be split by.
bounds A character vector of length 1. Has to be one of c('upper', 'lower', 'both").
Defaults to Upper.
Value

Returns a list of iteratively restricted xts objects

32

See Also

Other convinience: calibrateWindow(), removeBound()

Examples

#
#
#
#
#
#

#
#
#
#
#

#
#

script: scr_FUN

date: 2023-12-27

author: Serkan Korkmaz, serkorl@duck.com
objective: Demonstrate the use of the convinience
funtions

script start;

by default the Fear and Greed Index
is given daily. So to align these values
with, say, weekly candles it has to be aggregated

In this example the built-in data are used

1) check index of BTCUSDT and
the Fear and Greed Index

setequal(

)

#
#
#

z00: :index (BTCUSDT),
z00: :index (FGIndex)

2) to align the indices,
we use the convincience functions
by splitting the FGI by the BTC index.

FGIndex <- splitWindow(

#
#
#

xts = FGIndex,
by = zoo::index(BTCUSDT),

Remove upper bounds of the

index to avoid overlap between

the dates.

#

This ensures that the FGI is split
according to start of each weekly
BTC candle

bounds = 'upper'

3) as splitWindow returns a list
it needs to passed into calibrateWindow
to ensure comparability

FGIndex <- calibrateWindow(

list = FGIndex,

As each element in the list can include

more than one row, each element needs to be aggregated

or summarised.
#

splitWindow

splitWindow

using xts::first gives the first element
of each list, along with its values
FUN = xts::first

3) check if candles aligns
accordingly
setequal(

z00: : index (BTCUSDT),

z00: :index (FGIndex)

)

As the dates are now aligned

and the Fear and Greed Index being summarised by

the first value, the Fear and Greed Index is the opening
Fear and Greed Index value, at each candle.

script end;

33

Index

x chart indicators
addBBands, 2
addEvents, 3
addFGIndex, 6
addLSRatio, 7
addMA, 9
addMACD, 10
addRSI, 11
addVolume, 13
chart, 20

* charting
chart, 20
kline, 27
ohlc, 28

* convinience
calibrateWindow, 18
removeBound, 29
splitWindow, 31

+ datasets
ATOMUSDT, 14
BTCUSDT, 17
DOGEUSDT, 21
FGIndex, 22

+ data
ATOMUSDT, 14
BTCUSDT, 17
DOGEUSDT, 21
FGIndex, 22

* sentiment
getFGIndex, 22
getlLSRatio, 24

addBBands, 2,4, 6, 8, 9, 11-13, 20
addEvents, 3, 3,6, 8, 9, 11-13, 20
addEvents(), 4
addFGIndex, 3, 4, 5,8, 9, 11-13, 20
addLSRatio, 3,4,6,7,9, 11-13, 20
addMA, 3, 4,6, 8,9, 11-13, 20
addMACD, 3, 4,6, 8, 9, 10, 12, 13, 20
addRSI, 3,4,6,8,9,11,11, 13,20

34

addVolume, 3, 4,6, 8, 9, 11, 12,13, 20
as.character(), 22, 24, 26
ATOMUSDT, 14, 18, 21, 22
availableExchanges, 15
availableExchanges(), 26
availablelntervals, 15
availablelntervals(), 24, 26
availableTickers, 16
availableTickers(), 24, 26

BTCUSDT, 14, 17, 21, 22

calibrateWindow, 18, 30, 32
chart, 3,4,6,8, 9, 11-13, 20, 28

data.frame, 4
do.call, I8
DOGEUSDT, 74, 18, 21, 22

FALSE, 24, 28
FGIndex, 14,18, 21,22

getFGIndex, 22, 25
getFGIndex(), 6
getLSRatio, 23, 24
getLSRatio(), 7
getQuote, 26

kline, 20, 27, 28
kline(),2,4,6, 7,9 10,12, 13,20

lapply, 18
list(), I8

NULL, 26

ohlc, 20, 28, 28
ohlc(),2,4,6,7,9 10,12, 13,20

plotly::layout(), 4

removeBound, /8, 29, 32

INDEX

splitWindow, /8, 30, 31
splitWindow(), 31/
stats: :window(), 29, 31
Sys.Date(), 22, 24, 26
Sys.time(), 22, 24, 26

TRUE, 20, 24, 26, 28
TTR, 9

TTR: :BBands(), 2
TTR::MACD(Q), 10
TTR::RSI(), 12
TTR::SMAQ), 9

z00: :index (), 31

	addBBands
	addEvents
	addFGIndex
	addLSRatio
	addMA
	addMACD
	addRSI
	addVolume
	ATOMUSDT
	availableExchanges
	availableIntervals
	availableTickers
	BTCUSDT
	calibrateWindow
	chart
	DOGEUSDT
	FGIndex
	getFGIndex
	getLSRatio
	getQuote
	kline
	ohlc
	removeBound
	splitWindow
	Index

