contsurvplot: Visualize the Effect of a Continuous Variable on a Time-to-Event
Outcome
Graphically display the (causal) effect of a continuous variable on a time-to-event outcome
	using multiple different types of plots based on g-computation. Those functions
	include, among others, survival area plots, survival contour plots, survival quantile plots and
	3D surface plots. Due to the use of g-computation, all plot allow confounder-adjustment naturally.
	For details, see Robin Denz, Nina Timmesfeld (2023) <doi:10.1097/EDE.0000000000001630>.
| Version: | 0.2.2 | 
| Imports: | ggplot2 (≥ 3.4.0), dplyr, rlang, riskRegression, foreach | 
| Suggests: | survival, pammtools, gganimate, transformr, plotly, reshape2, doParallel, knitr, rmarkdown, testthat (≥ 3.0.0), vdiffr (≥
1.0.0), covr | 
| Published: | 2025-07-24 | 
| DOI: | 10.32614/CRAN.package.contsurvplot | 
| Author: | Robin Denz [aut, cre] | 
| Maintainer: | Robin Denz  <robin.denz at rub.de> | 
| Contact: | <robin.denz@rub.de> | 
| BugReports: | https://github.com/RobinDenz1/contsurvplot/issues | 
| License: | GPL (≥ 3) | 
| URL: | https://github.com/RobinDenz1/contsurvplot,
https://robindenz1.github.io/contsurvplot/ | 
| NeedsCompilation: | no | 
| Citation: | contsurvplot citation info | 
| Materials: | README, NEWS | 
| CRAN checks: | contsurvplot results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=contsurvplot
to link to this page.