Model-based clustering using Bayesian parsimonious Gaussian mixture models.
  MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. 
  GREEN et al. (1995) <doi:10.1093/biomet/82.4.711>.
| Version: | 1.0.9 | 
| Depends: | R (≥ 3.1.0) | 
| Imports: | methods (≥ 3.5.1), mcmcse (≥ 1.3-2), pgmm (≥ 1.2.3), mvtnorm (≥ 1.0-10), MASS (≥ 7.3-51.1), Rcpp (≥ 1.0.1), gtools (≥ 3.8.1), label.switching (≥ 1.8), fabMix (≥ 5.0), mclust (≥ 5.4.3) | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| Suggests: | testthat | 
| Published: | 2022-06-01 | 
| DOI: | 10.32614/CRAN.package.bpgmm | 
| Author: | Xiang Lu <Xiang_Lu at urmc.rochester.edu>,
    Yaoxiang Li <yl814 at georgetown.edu>,
    Tanzy Love <tanzy_love at urmc.rochester.edu> | 
| Maintainer: | Yaoxiang Li  <yl814 at georgetown.edu> | 
| License: | GPL-3 | 
| NeedsCompilation: | yes | 
| SystemRequirements: | C++11 | 
| CRAN checks: | bpgmm results [issues need fixing before 2025-11-15] |