bnpa: Bayesian Networks & Path Analysis
This project aims to enable the method of Path Analysis to infer causalities 
             from data. For this we propose a hybrid approach, which uses Bayesian network 
             structure learning algorithms from data to create the input file for creation of a 
             PA model. The process is performed in a semi-automatic way by our intermediate 
             algorithm, allowing novice researchers to create and evaluate their own PA models
             from a data set. The references used for this project are: 
             Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT press. <doi:10.1017/S0269888910000275>. 
             Nagarajan, R., Scutari, M., & Lèbre, S. (2013). Bayesian networks in r. Springer, 122, 125-127. Scutari, M., & Denis, J. B. <doi:10.1007/978-1-4614-6446-4>.
             Scutari M (2010). Bayesian networks: with examples in R. Chapman and Hall/CRC. <doi:10.1201/b17065>. 
             Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1 - 36. <doi:10.18637/jss.v048.i02>.
| Version: | 0.3.0 | 
| Imports: | bnlearn, fastDummies, lavaan, Rgraphviz, semPlot, xlsx | 
| Published: | 2019-08-01 | 
| DOI: | 10.32614/CRAN.package.bnpa | 
| Author: | Elias Carvalho, Joao R N Vissoci, Luciano Andrade, Wagner Machado, Emerson P Cabrera, Julio C Nievola | 
| Maintainer: | Elias Carvalho  <ecacarva at gmail.com> | 
| License: | GPL-3 | 
| URL: | https://sites.google.com/site/bnparp/. | 
| NeedsCompilation: | no | 
| CRAN checks: | bnpa results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=bnpa
to link to this page.