| Type: | Package | 
| Title: | Automated Population Pharmacokinetic Dataset Assembly | 
| Version: | 1.1.1 | 
| Date: | 2024-01-05 | 
| Maintainer: | Stephen Amori <stephen.amori@amadorbio.com> | 
| Description: | Automated methods to assemble population PK (pharmacokinetic) and PKPD (pharmacodynamic) datasets for analysis in 'NONMEM' (non-linear mixed effects modeling) by Bauer (2019) <doi:10.1002/psp4.12404>. The package includes functions to build datasets from SDTM (study data tabulation module) https://www.cdisc.org/standards/foundational/sdtm, ADaM (analysis dataset module) https://www.cdisc.org/standards/foundational/adam, or other dataset formats. The package will combine population datasets, add covariates, and create documentation to support regulatory submission and internal communication. | 
| License: | GPL (≥ 3) | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| Imports: | dplyr, tidyr, purrr, this.path, flextable, officer, tidyselect, utils, arsenal | 
| RoxygenNote: | 7.2.3 | 
| URL: | https://github.com/stephen-amori/apmx | 
| BugReports: | https://github.com/stephen-amori/apmx/issues | 
| Depends: | R (≥ 4.00) | 
| Suggests: | rmarkdown, knitr, testthat, tibble | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | no | 
| Packaged: | 2024-01-05 20:40:33 UTC; Stephen.Amori | 
| Author: | Stephen Amori [aut, cre, cph], Ethan DellaMaestra [aut], Michael Dick [aut], Daniel Litow [ctb], Jonah Lyon [ctb] | 
| Repository: | CRAN | 
| Date/Publication: | 2024-01-09 09:00:18 UTC | 
DM
Description
Randomly generated demographic data domain
Usage
DM
Format
## 'DM' A data frame with 22 rows and 12 variables:
- STUDYID
- study label 
- SITEID
- site code 
- SUBJID
- subject code 
- USUBJID
- unique subject ID 
- SCRFL
- screen fail flag 
- ICFDT
- informed consent date 
- ICFDTC
- informed consent date character form 
- DOBDT
- date of birth 
- AGE
- subject baseline age 
- SEX
- subject sex 
- RACE
- subject race 
- ETHNIC
- subject ethnicity 
EX
Description
Randomly generated exposure domain
Usage
EX
Format
## 'EX' A data frame with 42 rows and 19 variables:
- STUDYID
- study label 
- SITEID
- site code 
- USUBJID
- unique subject ID 
- EXCAT
- domain category 
- VISIT
- visit label 
- EXSTDY
- numeric study day 
- VISCRFN
- visit numeric code 
- EXTRT
- treatment label 
- EXDOSE
- treatment amount 
- EXDOSU
- treatment unit label 
- EXROUTE
- treatment route label 
- EXDOSFRQ
- treatment frequency 
- EXDT
- treatment administration date 
- EXDTC
- treatment administration date character form 
- EXTM
- treatment administration time 
- EXTMC
- treatment administration time character form 
- EXSTDTC
- treatment administration date and time 
- EXTPT
- treatment timepoint label 
- EXTPTNUM
- treatment numeric timepoint 
LB
Description
Randomly generated laboratory data domain
Usage
LB
Format
## 'LB' A data frame with 2159 rows and 16 variables:
- STUDYID
- study label 
- SITEID
- site code 
- USUBJID
- unique subject ID 
- LBCAT
- domain category 
- LBCOMPFL
- completion flag 
- LBDT
- date of assessment 
- LBVST
- visit label 
- VISCRFN
- visit numeric code 
- LBTPT
- timepoint label 
- LBTPTN
- timepoint numeric code 
- LBPARAMCD
- parameter code 
- LBPARAM
- parameter 
- LBORRES
- original parameter result 
- LBORRESC
- original parameter result, character form 
- LBORRESU
- original parameter unit label 
PC
Description
Randomly generated pharmacokinetic observation domain
Usage
PC
Format
## 'PC' A data frame with 420 rows and 19 variables:
- STUDYID
- study label 
- SITEID
- site code 
- USUBJID
- unique subject ID 
- PCCAT
- domain category 
- PCTEST
- analyte category 
- VISIT
- visit label 
- PCDY
- study numeric day 
- VISCRFN
- visit numeric code 
- PCTPT
- timepoint label 
- PCTPTN
- timepoint numeric code 
- PCSTAT
- completion status 
- PCDT
- observation date 
- PCTM
- observation time 
- PCTMC
- observation time character form 
- PCDTC
- observation date and time 
- PCORRES
- original pharmacokinetic observation 
- PCORRESU
- original pharmacokinetic observation unit label 
- PCSTRESN
- standardized pharmacokinetic numeric observation 
- PCSTRESC
- standardized pharmacokinetic character observation 
- PCSTRESU
- standardized pharmacokinetic observation unit label 
- PCLLOQ
- standardized pharmacokinetic observation lower limit of quantification 
VL
Description
Variable list with apmx variables and definitions
Usage
VL
Format
## 'VL' A data frame with 66 rows and 4 variables:
- Variable
- Column or variable name 
- Categorization
- Column or variable category 
- Description
- Column or variable description 
- Comment
- NA by default 
Apply covariates to PK(PD) dataset
Description
Add covariates to a dataset built by pk_build() or pk_combine() Can add subject-level covariates (by any ID variable) or time-varying (by any time variable)
Usage
cov_apply(
  df,
  cov,
  id.by = "USUBJID",
  time.by = NA,
  direction = "downup",
  exp = FALSE,
  ebe = FALSE,
  cov.rnd = NA,
  na = -999,
  demo.map = TRUE,
  keep.other = TRUE
)
Arguments
| df | PK(PD) dataframe generated by pk_build | 
| cov | dataframe of covariates | 
| id.by | id variable to merge covariates | 
| time.by | time variable to merge covariates | 
| direction | fill direction for time-varying covariates | 
| exp | treats new covariates as exposure metrics when TRUE | 
| ebe | treats new covariates as empirical bayes estimates when TRUE | 
| cov.rnd | covariate rounding parameter | 
| na | value to replace NA numeric covariates | 
| demo.map | toggle pre-set numeric values for SEX, RACE, and ETHNIC demographic variables | 
| keep.other | filter to keep or remove other events, EVID = 2 | 
Value
PK(PD) dataset with additional covariates]
Examples
## Simple ex domain with 1 subject and 1 dose
ex <- data.frame(STUDYID = "ABC101",
                 USUBJID = "ABC101-001",
                 EXSTDTC = "2000-01-01 10:00:00",
                 EXSTDY = 1,
                 EXTPTNUM = 0,
                 EXDOSE = 100,
                 CMT = 1,
                 EXTRT = "ABC",
                 EXDOSU = "mg",
                 VISIT = "Day 1",
                 EXTPT = "Dose",
                 EXDOSFRQ = "Once",
                 EXROUTE = "Oral")
## Simple pc domain with 1 subject and 3 observations
pc <- data.frame(USUBJID = "ABC101-001",
                 PCDTC = c("2000-01-01 09:40:00",
                           "2000-01-01 10:29:00",
                           "2000-01-01 12:05:00"),
                 PCDY = 1,
                 PCTPTNUM = c(0, ##Units of hours
                              0.021,
                              0.083),
                 PCSTRESN = c(NA,
                              469,
                              870),
                 PCLLOQ = 25,
                 CMT = 2,
                 VISIT = "Day 1",
                 PCTPT = c("Pre-dose",
                           "30-min post-dose",
                           "2-hr post-dose"),
                 PCTEST = "ABC",
                 PCSTRESU = "ug/mL")
## Create with pk_build()
df <- pk_build(ex, pc)
## Simple dm domain for the corresponding study
dm <- data.frame(USUBJID = c("ABC101-001",
                             "ABC101-002",
                             "ABC101-003"),
                 AGE = c(45,
                         37,
                         73),
                 AGEU = "years",
                 SEX = c("Male",
                         "Female",
                         "Male"),
                 RACE = c("White",
                          "White",
                          "Black"),
                 ETHNIC = c("Not Hispanic/Latino",
                            "Not Hispanic/Latino",
                            "Not Hispanic/Latino"))
## Add covariates with cov_apply()
df1 <- cov_apply(df, dm)
Find covariates of particular types
Description
Can filter for categorical, continuous, or other covariates. Can filter for numeric or character type.
Usage
cov_find(df, cov, type)
Arguments
| df | PK(PD) dataset | 
| cov | covariate distribution | 
| type | covariate type | 
Value
vector of desired column names
Examples
## Simple ex domain with 1 subject and 1 dose
ex <- data.frame(STUDYID = "ABC101",
                 USUBJID = "ABC101-001",
                 EXSTDTC = "2000-01-01 10:00:00",
                 EXSTDY = 1,
                 EXTPTNUM = 0,
                 EXDOSE = 100,
                 CMT = 1,
                 EXTRT = "ABC",
                 EXDOSU = "mg",
                 VISIT = "Day 1",
                 EXTPT = "Dose",
                 EXDOSFRQ = "Once",
                 EXROUTE = "Oral")
## Simple pc domain with 1 subject and 3 observations
pc <- data.frame(USUBJID = "ABC101-001",
                 PCDTC = c("2000-01-01 09:40:00",
                           "2000-01-01 10:29:00",
                           "2000-01-01 12:05:00"),
                 PCDY = 1,
                 PCTPTNUM = c(0, ##Units of hours
                              0.021,
                              0.083),
                 PCSTRESN = c(NA,
                              469,
                              870),
                 PCLLOQ = 25,
                 CMT = 2,
                 VISIT = "Day 1",
                 PCTPT = c("Pre-dose",
                           "30-min post-dose",
                           "2-hr post-dose"),
                 PCTEST = "ABC",
                 PCSTRESU = "ug/mL")
## Create with pk_build()
df <- pk_build(ex, pc)
## Simple dm domain for the corresponding study
dm <- data.frame(USUBJID = c("ABC101-001",
                             "ABC101-002",
                             "ABC101-003"),
                 AGE = c(45,
                         37,
                         73),
                 AGEU = "years",
                 SEX = c("Male",
                         "Female",
                         "Male"),
                 RACE = c("White",
                          "White",
                          "Black"),
                 ETHNIC = c("Not Hispanic/Latino",
                            "Not Hispanic/Latino",
                            "Not Hispanic/Latino"))
## Add covariates with cov_apply()
df1 <- cov_apply(df, dm)
## Find covariates with cov_find()
cov_find(df1, cov="categorical", type="numeric")
cov_find(df1, cov="categorical", type="character")
cov_find(df1, cov="continuous", type="numeric")
cov_find(df1, cov="units", type="character")
Create a NONMEM PK(PD) dataset
Description
Input a pre-processed ex and pc domain for combination into a NONMEM dataset. Additional pd endpoints, subject-level covariates, and time-varying covariates can also be added. Other parameters can customize some calculations and formatting.
Usage
pk_build(
  ex,
  pc = NA,
  pd = NA,
  sl.cov = NA,
  tv.cov = NA,
  time.units = "days",
  cycle.length = NA,
  na = -999,
  time.rnd = NULL,
  amt.rnd = NULL,
  dv.rnd = NULL,
  cov.rnd = NULL,
  impute = NA,
  BDV = FALSE,
  DDV = FALSE,
  PDV = FALSE,
  sparse = 3,
  demo.map = TRUE,
  tv.cov.fill = "downup",
  keep.other = TRUE
)
Arguments
| ex | dose event dataframe | 
| pc | pc event dataframe | 
| pd | pd event dataframe | 
| sl.cov | subject-level covariate dataframe | 
| tv.cov | time-varying covariate dataframe | 
| time.units | units for time attributes | 
| cycle.length | cycle length in units of days | 
| na | value for missing numeric items | 
| time.rnd | time attribute rounding parameter | 
| amt.rnd | amount attribute rounding parameter | 
| dv.rnd | dependent variable attribute rounding parameter | 
| cov.rnd | covariate attribute rounding parameter | 
| impute | imputation method | 
| BDV | baseline pd attribute | 
| DDV | change from baseline pd attribute | 
| PDV | percent change from baseline pd attribute | 
| sparse | threshold for sparse sampling | 
| demo.map | toggle pre-set numeric values for SEX, RACE, and ETHNIC demographic variables | 
| tv.cov.fill | time-varying covariate fill direction | 
| keep.other | filter to keep or remove other events, EVID = 2 | 
Value
PK(PD) dataset
Examples
## Simple ex domain with 1 subject and 1 dose
ex <- data.frame(STUDYID = "ABC101",
                 USUBJID = "ABC101-001",
                 EXSTDTC = "2000-01-01 10:00:00",
                 EXSTDY = 1,
                 EXTPTNUM = 0,
                 EXDOSE = 100,
                 CMT = 1,
                 EXTRT = "ABC",
                 EXDOSU = "mg",
                 VISIT = "Day 1",
                 EXTPT = "Dose",
                 EXDOSFRQ = "Once",
                 EXROUTE = "Oral")
## Simple pc domain with 1 subject and 3 observations
pc <- data.frame(USUBJID = "ABC101-001",
                 PCDTC = c("2000-01-01 09:40:00",
                           "2000-01-01 10:29:00",
                           "2000-01-01 12:05:00"),
                 PCDY = 1,
                 PCTPTNUM = c(0, ##Units of hours
                              0.021,
                              0.083),
                 PCSTRESN = c(NA,
                              469,
                              870),
                 PCLLOQ = 25,
                 CMT = 2,
                 VISIT = "Day 1",
                 PCTPT = c("Pre-dose",
                           "30-min post-dose",
                           "2-hr post-dose"),
                 PCTEST = "ABC",
                 PCSTRESU = "ug/mL")
## Create with pk_build()
df <- pk_build(ex, pc)
combine study level datasets to form population dataset
Description
Input two datasets created by pk_build(). Any character descriptions that were numerically mapped will be re-mapped to the whole population.
Usage
pk_combine(df1, df2, demo.map = TRUE, na = -999)
Arguments
| df1 | original PK(PD) dataset | 
| df2 | additional PK(PD) dataset | 
| demo.map | toggle pre-set numeric values for SEX, RACE, and ETHNIC demographic variables | 
| na | value for missing numeric items | 
Value
population PK(PD) dataset
Examples
## Simple ex domain with 1 subject and 1 dose, study 101
ex101 <- data.frame(STUDYID = "ABC101",
                    USUBJID = "ABC101-001",
                    EXSTDTC = "2000-01-01 10:00:00",
                    EXSTDY = 1,
                    EXTPTNUM = 0,
                    EXDOSE = 100,
                    CMT = 1,
                    EXTRT = "ABC",
                    EXDOSU = "mg",
                    VISIT = "Day 1",
                    EXTPT = "Dose",
                    EXDOSFRQ = "Once",
                    EXROUTE = "Oral")
## Simple ex domain with 1 subject and 1 dose, study 102
ex102 <- data.frame(STUDYID = "ABC102",
                    USUBJID = "ABC102-001",
                    EXSTDTC = "2001-01-01 08:09:00",
                    EXSTDY = 1,
                    EXTPTNUM = 0,
                    EXDOSE = 200,
                    CMT = 1,
                    EXTRT = "ABC",
                    EXDOSU = "mg",
                    VISIT = "Day 1",
                    EXTPT = "Dose",
                    EXDOSFRQ = "QW",
                    EXROUTE = "Oral")
## Simple pc domain with 1 subject and 3 observations, study 101
pc101 <- data.frame(USUBJID = "ABC101-001",
                    PCDTC = c("2000-01-01 09:40:00",
                              "2000-01-01 10:29:00",
                              "2000-01-01 12:05:00"),
                    PCDY = 1,
                    PCTPTNUM = c(0, ##Units of hours
                                 0.021,
                                 0.083),
                    PCSTRESN = c(NA,
                                 469,
                                 870),
                    PCLLOQ = 25,
                    CMT = 2,
                    VISIT = "Day 1",
                    PCTPT = c("Pre-dose",
                              "30-min post-dose",
                              "2-hr post-dose"),
                    PCTEST = "ABC",
                    PCSTRESU = "ug/mL")
## Simple pc domain with 1 subject and 3 observations, study 102
pc102 <- data.frame(USUBJID = "ABC102-001",
                    PCDTC = c("2001-01-01 08:05:00",
                              "2001-01-01 11:38:00",
                              "2001-01-02 08:11:00"),
                    PCDY = 1,
                    PCTPTNUM = c(0, ##Units of hours
                                 0.125,
                                 1),
                    PCSTRESN = c(NA,
                                 1150,
                                 591),
                    PCLLOQ = 25,
                    CMT = 2,
                    VISIT = "Day 1",
                    PCTPT = c("Pre-dose",
                              "2-4 hr post-dose",
                              "24 hr post-dose"),
                    PCTEST = "ABC",
                    PCSTRESU = "ug/mL")
## Create with pk_build()
df101 <- pk_build(ex101, pc101)
df102 <- pk_build(ex102, pc102)
## Combine with pk_combine()
df_combine <- pk_combine(df101, df102)
Create definition file from published dataset
Description
Definition file table can be read into a template word document (.docx) or blank document if desired. Definitions are sourced from a variable list stored separately on your server. Please refer to apmx::variable_list_export() for a standard copy of the variable list.
Usage
pk_define(
  df,
  file = NULL,
  project,
  data,
  variable.list,
  template = NULL,
  font = "Times New Roman",
  size = 9,
  na = -999
)
Arguments
| df | apmx analysis dataset | 
| file | optional filepath for defintion file (.docx file) | 
| project | project name | 
| data | dataset name | 
| variable.list | reference dataframe for variable definitions | 
| template | optional filepath for definition file template (.docx file) | 
| font | font for table contents | 
| size | font size for table contents | 
| na | value used for missing or na numeric covariates | 
Value
dataset definition file
Examples
## Simple ex domain with 1 subject and 1 dose
ex <- data.frame(STUDYID = "ABC101",
                 USUBJID = "ABC101-001",
                 EXSTDTC = "2000-01-01 10:00:00",
                 EXSTDY = 1,
                 EXTPTNUM = 0,
                 EXDOSE = 100,
                 CMT = 1,
                 EXTRT = "ABC",
                 EXDOSU = "mg",
                 VISIT = "Day 1",
                 EXTPT = "Dose",
                 EXDOSFRQ = "Once",
                 EXROUTE = "Oral")
## Simple pc domain with 1 subject and 3 observations
pc <- data.frame(USUBJID = "ABC101-001",
                 PCDTC = c("2000-01-01 09:40:00",
                           "2000-01-01 10:29:00",
                           "2000-01-01 12:05:00"),
                 PCDY = 1,
                 PCTPTNUM = c(0, ##Units of hours
                              0.021,
                              0.083),
                 PCSTRESN = c(NA,
                              469,
                              870),
                 PCLLOQ = 25,
                 CMT = 2,
                 VISIT = "Day 1",
                 PCTPT = c("Pre-dose",
                           "30-min post-dose",
                           "2-hr post-dose"),
                 PCTEST = "ABC",
                 PCSTRESU = "ug/mL")
## Create apmx dataset with pk_build()
df <- pk_build(ex, pc)
## Create variable definitions with variable_list_create()
vl <- variable_list_create()
## Create definition file
pk_define(df, variable.list = vl)
Produce summary tables for a PK(PD) dataset
Description
Summarize BLQ distributions, categorical covariates, and continuous covariates in three tables. Outputs are default .csv files, but can also be .docx and/or .pptx Tables are default stratified by study, but can be stratified by any variable requested by the user.
Usage
pk_summarize(
  df,
  dir = NA,
  strat.by = "NSTUDYC",
  ignore.c = TRUE,
  na = -999,
  docx = FALSE,
  pptx = FALSE,
  docx.font = "Times New Roman",
  docx.size = 9,
  docx.template = NULL,
  pptx.template = NULL,
  pptx.font = "Times New Roman",
  pptx.size = 12,
  docx.orientation = "portrait",
  ignore.request = c()
)
Arguments
| df | dataset produced by pk_build(). | 
| dir | filepath for output directory. | 
| strat.by | vector of variables names to stratify the summary tables. | 
| ignore.c | ignores records flagged in the C column when TRUE. | 
| na | numeric value to be interpreted as NA or missing. | 
| docx | creates summary tables as a Word document when TRUE. | 
| pptx | creates summary tables as a PowerPoint document when TRUE. | 
| docx.font | font for the summary tables in the Word document. | 
| docx.size | font size for the summary tables in the Word document. | 
| docx.template | filepath for template .docx file. When NULL, the summary tables print to a blank document. | 
| pptx.template | filepath for template .pptx file. When NULL, the summary tables print to a blank slide. | 
| pptx.font | font for the summary tables in the PowerPoint document. | 
| pptx.size | font size for the summary tables in the PowerPoint document. | 
| docx.orientation | orientation of .docx files. | 
| ignore.request | vector of additional logical expressions to filter the datase prior to summary. | 
Value
summary tables as .csv, .docx, and .pptx files
Examples
## Simple ex domain with 1 subject and 1 dose
ex <- data.frame(STUDYID = "ABC101",
                 USUBJID = "ABC101-001",
                 EXSTDTC = "2000-01-01 10:00:00",
                 EXSTDY = 1,
                 EXTPTNUM = 0,
                 EXDOSE = 100,
                 CMT = 1,
                 EXTRT = "ABC",
                 EXDOSU = "mg",
                 VISIT = "Day 1",
                 EXTPT = "Dose",
                 EXDOSFRQ = "Once",
                 EXROUTE = "Oral")
## Simple pc domain with 1 subject and 3 observations
pc <- data.frame(USUBJID = "ABC101-001",
                 PCDTC = c("2000-01-01 09:40:00",
                           "2000-01-01 10:29:00",
                           "2000-01-01 12:05:00"),
                 PCDY = 1,
                 PCTPTNUM = c(0, ##Units of hours
                              0.021,
                              0.083),
                 PCSTRESN = c(NA,
                              469,
                              870),
                 PCLLOQ = 25,
                 CMT = 2,
                 VISIT = "Day 1",
                 PCTPT = c("Pre-dose",
                           "30-min post-dose",
                           "2-hr post-dose"),
                 PCTEST = "ABC",
                 PCSTRESU = "ug/mL")
## Create with pk_build()
df <- pk_build(ex, pc)
## Generate summary statistics with pk_summarize()
pk_summarize(df)
Write PK(PD) dataset to specified location
Description
Dataset created by pk_build() or pk_combine() will be outputted as a .csv file with NONMEM-standard formatting.
Usage
pk_write(df, file)
Arguments
| df | PK(PD) dataframe | 
| file | filepath | 
Value
writes dataset to specified location
Examples
## Simple ex domain with 1 subject and 1 dose
ex <- data.frame(STUDYID = "ABC101",
                 USUBJID = "ABC101-001",
                 EXSTDTC = "2000-01-01 10:00:00",
                 EXSTDY = 1,
                 EXTPTNUM = 0,
                 EXDOSE = 100,
                 CMT = 1,
                 EXTRT = "ABC",
                 EXDOSU = "mg",
                 VISIT = "Day 1",
                 EXTPT = "Dose",
                 EXDOSFRQ = "Once",
                 EXROUTE = "Oral")
## Simple pc domain with 1 subject and 3 observations
pc <- data.frame(USUBJID = "ABC101-001",
                 PCDTC = c("2000-01-01 09:40:00",
                           "2000-01-01 10:29:00",
                           "2000-01-01 12:05:00"),
                 PCDY = 1,
                 PCTPTNUM = c(0, ##Units of hours
                              0.021,
                              0.083),
                 PCSTRESN = c(NA,
                              469,
                              870),
                 PCLLOQ = 25,
                 CMT = 2,
                 VISIT = "Day 1",
                 PCTPT = c("Pre-dose",
                           "30-min post-dose",
                           "2-hr post-dose"),
                 PCTEST = "ABC",
                 PCSTRESU = "ug/mL")
## Create with pk_build()
df <- pk_build(ex, pc)
## Write with pk_write()
name <- "dataset.csv"
pk_write(df, file.path(tempdir(), name))
Create a dataframe with standard variable names and definitions
Description
Variable list should be used as an input to the apmx::pk_define() function. The user should add additional definitions to the file for custom columns with apmx::variable_list_add().
Usage
variable_list_create(
  variable = NULL,
  categorization = NULL,
  description = NULL,
  comment = NA
)
Arguments
| variable | vector of variable names | 
| categorization | vector of category names | 
| description | vector of variable descriptions | 
| comment | vector of variable comments (can be left NA) | 
Value
dataframe of standard variable definitions
Examples
vl <- variable_list_create(variable = c("WEIGHT", "HEIGHT"),
                           categorization = rep("Covariate", 2),
                           description = c("weight", "height"))
Create and maintain a dataset version log
Description
Version log is outputted as a .docx file. Document tracks changes in subject count, record count, new variables, and changing variables. User comments in the word document are preserved between versions.
Usage
version_log(
  df,
  name,
  file = NULL,
  prevdata = NULL,
  template = NULL,
  comp_var,
  src_data = "",
  font = "Times New Roman",
  size = 9,
  orient = "landscape"
)
Arguments
| df | filepath of new dataset | 
| name | name of the dataset (filename with .csv suffix) | 
| file | filepath for version log file (.docx) | 
| prevdata | comparison dataset filepath | 
| template | template docx filepath | 
| comp_var | grouping variables for comparison | 
| src_data | string to describe source data | 
| font | font style | 
| size | font size | 
| orient | document orientation | 
Value
version log as a .docx file
Examples
## Simple ex domain with 1 subject and 1 dose
ex <- data.frame(STUDYID = "ABC101",
                 USUBJID = "ABC101-001",
                 EXSTDTC = "2000-01-01 10:00:00",
                 EXSTDY = 1,
                 EXTPTNUM = 0,
                 EXDOSE = 100,
                 CMT = 1,
                 EXTRT = "ABC",
                 EXDOSU = "mg",
                 VISIT = "Day 1",
                 EXTPT = "Dose",
                 EXDOSFRQ = "Once",
                 EXROUTE = "Oral")
## Simple pc domain with 1 subject and 3 observations
pc <- data.frame(USUBJID = "ABC101-001",
                 PCDTC = c("2000-01-01 09:40:00",
                           "2000-01-01 10:29:00",
                           "2000-01-01 12:05:00"),
                 PCDY = 1,
                 PCTPTNUM = c(0, ##Units of hours
                              0.021,
                              0.083),
                 PCSTRESN = c(NA,
                              469,
                              870),
                 PCLLOQ = 25,
                 CMT = 2,
                 VISIT = "Day 1",
                 PCTPT = c("Pre-dose",
                           "30-min post-dose",
                           "2-hr post-dose"),
                 PCTEST = "ABC",
                 PCSTRESU = "ug/mL")
## Create with pk_build()
df <- pk_build(ex, pc)
## Document with version_log()
vlog <- version_log(df, name = "PK_DATA_V01.csv")