SparseICA: Sparse Independent Component Analysis
Provides an implementation of the Sparse ICA method in Wang et al. (2024) <doi:10.1080/01621459.2024.2370593> for estimating sparse independent source components of cortical surface functional MRI data, by addressing a non-smooth, non-convex optimization problem through the relax-and-split framework. This method effectively balances statistical independence and sparsity while maintaining computational efficiency.
| Version: | 0.1.4 | 
| Depends: | R (≥ 4.1.0) | 
| Imports: | Rcpp (≥ 1.0.13), MASS (≥ 7.3-58), irlba (≥ 2.3.5), clue (≥
0.3), ciftiTools (≥ 0.16), parallel (≥ 4.1) | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| Published: | 2025-01-29 | 
| DOI: | 10.32614/CRAN.package.SparseICA | 
| Author: | Zihang Wang  [aut,
    cre],
  Irina Gaynanova  [aut],
  Aleksandr Aravkin  [aut],
  Benjamin Risk  [aut] | 
| Maintainer: | Zihang Wang  <zhwang0378 at gmail.com> | 
| BugReports: | https://github.com/thebrisklab/SparseICA/issues | 
| License: | GPL-3 | 
| URL: | https://github.com/thebrisklab/SparseICA | 
| NeedsCompilation: | yes | 
| Citation: | SparseICA citation info | 
| CRAN checks: | SparseICA results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=SparseICA
to link to this page.