SVEMnet: Self-Validated Ensemble Models with Lasso and Relaxed Elastic
Net Regression
Implements Self-Validated Ensemble Models (SVEM; Lemkus et al. (2021) <doi:10.1016/j.chemolab.2021.104439>) using elastic net regression via 'glmnet' (Friedman et al. (2010) <doi:10.18637/jss.v033.i01>). SVEM averages predictions from multiple models fitted to fractionally weighted bootstraps of the data, tuned with anti-correlated validation weights. Also implements the randomized permutation whole-model test for SVEM (Karl (2024) <doi:10.1016/j.chemolab.2024.105122>).
| Version: | 2.3.1 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | glmnet (≥ 4.1-4), stats, cluster, ggplot2, lhs, foreach, doParallel, parallel, gamlss, gamlss.dist | 
| Suggests: | covr, knitr, rmarkdown, testthat (≥ 3.0.0), withr, vdiffr | 
| Published: | 2025-10-13 | 
| DOI: | 10.32614/CRAN.package.SVEMnet | 
| Author: | Andrew T. Karl  [cre, aut] | 
| Maintainer: | Andrew T. Karl  <akarl at asu.edu> | 
| License: | GPL-2 | GPL-3 | 
| NeedsCompilation: | no | 
| Citation: | SVEMnet citation info | 
| Materials: | NEWS | 
| CRAN checks: | SVEMnet results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=SVEMnet
to link to this page.