RLoptimal: Optimal Adaptive Allocation Using Deep Reinforcement Learning
An implementation to compute an optimal adaptive allocation rule
    using deep reinforcement learning in a dose-response study
    (Matsuura et al. (2022) <doi:10.1002/sim.9247>).
    The adaptive allocation rule can directly optimize a performance metric,
    such as power, accuracy of the estimated target dose, or mean absolute error
    over the estimated dose-response curve.
| Version: | 1.2.2 | 
| Imports: | DoseFinding, glue, R6, reticulate, stats, utils, zip | 
| Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) | 
| Published: | 2025-10-02 | 
| DOI: | 10.32614/CRAN.package.RLoptimal | 
| Author: | Kentaro Matsuura  [aut, cre, cph],
  Koji Makiyama [aut, ctb] | 
| Maintainer: | Kentaro Matsuura  <matsuurakentaro55 at gmail.com> | 
| BugReports: | https://github.com/MatsuuraKentaro/RLoptimal/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/MatsuuraKentaro/RLoptimal | 
| NeedsCompilation: | no | 
| Language: | en-US | 
| Materials: | README, NEWS | 
| CRAN checks: | RLoptimal results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=RLoptimal
to link to this page.