| Type: | Package | 
| Title: | Improved Methods for Constructing Prediction Intervals for Network Meta-Analysis | 
| Version: | 1.1-2 | 
| Date: | 2023-05-21 | 
| Maintainer: | Hisashi Noma <noma@ism.ac.jp> | 
| Description: | Improved methods to construct prediction intervals for network meta-analysis. The parametric bootstrap and Kenward-Roger-type adjustment by Noma et al. (2022) <forthcoming> are implementable. | 
| Imports: | stats, MASS, metafor | 
| License: | GPL-3 | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| NeedsCompilation: | no | 
| Packaged: | 2023-05-22 01:01:14 UTC; Hisashi | 
| Author: | Hisashi Noma | 
| Depends: | R (≥ 3.5.0) | 
| Repository: | CRAN | 
| Date/Publication: | 2023-05-22 04:10:02 UTC | 
The 'PINMA' package.
Description
Improved Methods for Constructing Prediction Intervals for Network Meta-Analysis.
References
Noma, H., Hamura, Y., Sugasawa, S. and Furukawa, T. A. (2022+). Improved methods to construct prediction intervals for network meta-analysis. Forthcoming.
Kenward-Roger-type adjustment for constructing prediction intervals of network meta-analysis
Description
Kenward-Roger-type adjustment for constructing prediction intervals of network meta-analysis.
Usage
KR(y, S)
Arguments
| y | Contrast-based summary data of the outcome measure | 
| S | Covariance estimates of  | 
Value
Results of the Kenward-Roger-type adjustment for inference of multivariate random-effects model and prediction intervals for network meta-analysis.
-  Estimates: Restricted maximum likelihood (REML) estimates, their SE, and Wald-type 95% confidence intervals by the Kenward-Roger-type adjustment.
-  Between-studies_SD: Between-studies SD estimate.
-  95%PI: 95% prediction intervals by the Kenward-Roger-type adjustment.
References
Noma, H., Hamura, Y., Sugasawa, S. and Furukawa, T. A. (2022+). Improved methods to construct prediction intervals for network meta-analysis. Forthcoming.
Examples
data(dstr)
attach(dstr)
# Transforming the arm-level data to the contrast-based summaryies
edat <- data.edit(study,trt,d,n)
y <- edat$y
S <- edat$S
KR(y,S)    # Results of the NMA analysis (log OR scale)
Parametric bootstrap procedure for constructing prediction intervals of network meta-analysis
Description
Parametric bootstrap procedure for constructing prediction intervals of network meta-analysis.
Usage
PBS(y, S, B=2000)
Arguments
| y | Contrast-based summary data of the outcome measure | 
| S | Covariance estimates of  | 
| B | Number of bootstrap resampling (default: 2000). | 
Value
The parametric bootstrap prediction intervals for network meta-analysis.
-  Estimates: Restricted maximum likelihood (REML) estimates, their SE, and 95% Wald-type confidence intervals.
-  Between-studies_SD: Between-studies SD estimate.
-  95%PI: 95% prediction intervals by the parametric bootstrap.
References
Noma, H., Hamura, Y., Sugasawa, S. and Furukawa, T. A. (2022+). Improved methods to construct prediction intervals for network meta-analysis. Forthcoming.
Examples
data(dstr)
attach(dstr)
# Transforming the arm-level data to the contrast-based summaryies
edat <- data.edit(study,trt,d,n)
y <- edat$y
S <- edat$S
PBS(y,S,B=10)   # Results of the NMA analysis (log OR scale); B is recommended to be >= 1000.
Transforming arm-level data to contrast-based summary statistics
Description
Transforming arm-level data to contrast-based summary statistics.
Usage
data.edit(study,trt,d,n)
Arguments
| study | Study ID | 
| trt | Numbered treatment (=1,2,...) | 
| d | Number of events | 
| n | Sample size | 
Value
Contrast-based summary statistics are generated.
-  y: Contrast-based summary estimates.
-  S: Vectored within-study covariance matrix.
Examples
data(dstr)
attach(dstr)
edat <- data.edit(study,trt,d,n)
Siontis et al. (2018)'s network meta-analysis data
Description
-  study: Study ID
-  treat: Treatment
-  trt: Numbered treatment (1:CCTA, 2:CMR, 3:exercise ECG, 4:SPECT-MPI, 5:standard care, 6:Stress Echo)
-  n: Sample size
-  d: Number of events
Usage
data(dstr)
Format
A arm-based dataset with 29 rows and 5 variables
References
Siontis, G. C., Mavridis, D., Greenwood, J. P., et al. (2018). Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials. BMJ. 360: k504.
The ordinary t-approximation for constructing prediction intervals of network meta-analysis
Description
The ordinary t-approximation for constructing prediction intervals of network meta-analysis.
Usage
tPI(y, S)
Arguments
| y | Contrast-based summary data of the outcome measure | 
| S | Covariance estimates of  | 
Value
The ordinary t-approximation prediction intervals for network meta-analysis.
-  Estimates: Restricted maximum likelihood (REML) estimates, their SE, and Wald-type 95% confidence intervals.
-  Between-studies_SD: Between-studies SD estimate.
-  95%PI: 95% prediction intervals by the ordinary t-approximation.
References
Cooper, H., Hedges, L. V., and Valentine, J. C. (2009). The Handbook of Research Synthesis and Meta-Analysis, 2nd edition. New York: Russell Sage Foundation.
Chaimani, A., and Salanti, G. (2015). Visualizing assumptions and results in network meta-analysis: the network graphs package. Stata Journal 15, 905-920.
Examples
data(dstr)
attach(dstr)
# Transforming the arm-level data to the contrast-based summaryies
edat <- data.edit(study,trt,d,n)
y <- edat$y
S <- edat$S
tPI(y,S)   # Results of the NMA analysis (log OR scale)