Algorithms for ordinal causal discovery. This package aims to enable users to discover causality for observational ordinal categorical data with greedy and exhaustive search. See Ni, Y., & Mallick, B. (2022) <https://proceedings.mlr.press/v180/ni22a/ni22a.pdf> "Ordinal Causal Discovery. Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, (UAI 2022), PMLR 180:1530–1540".
| Version: | 1.1.2 | 
| Imports: | gRbase, MASS, bnlearn, igraph, stats, Matrix | 
| Published: | 2023-05-17 | 
| DOI: | 10.32614/CRAN.package.OrdCD | 
| Author: | Yang Ni | 
| Maintainer: | Yang Ni <yni at stat.tamu.edu> | 
| BugReports: | https://github.com/nySTAT/OrdCD/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/nySTAT/OrdCD | 
| NeedsCompilation: | no | 
| Materials: | README | 
| CRAN checks: | OrdCD results | 
| Reference manual: | OrdCD.html , OrdCD.pdf | 
| Package source: | OrdCD_1.1.2.tar.gz | 
| Windows binaries: | r-devel: OrdCD_1.1.2.zip, r-release: OrdCD_1.1.2.zip, r-oldrel: OrdCD_1.1.2.zip | 
| macOS binaries: | r-release (arm64): OrdCD_1.1.2.tgz, r-oldrel (arm64): OrdCD_1.1.2.tgz, r-release (x86_64): OrdCD_1.1.2.tgz, r-oldrel (x86_64): OrdCD_1.1.2.tgz | 
| Old sources: | OrdCD archive | 
Please use the canonical form https://CRAN.R-project.org/package=OrdCD to link to this page.