## ----setup, include = FALSE--------------------------------------------------- library(MBNMAdose) #devtools::load_all() library(rmarkdown) library(knitr) library(dplyr) library(ggplot2) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5, include=TRUE, tidy.opts=list(width.cutoff=80), tidy=TRUE ) ## ----------------------------------------------------------------------------- # Using the triptans dataset network <- mbnma.network(triptans) summary(network) ## ----message=FALSE, warning=FALSE--------------------------------------------- # Prepare data using the gout dataset goutnet <- mbnma.network(gout) summary(goutnet) ## ----------------------------------------------------------------------------- plot(goutnet, label.distance = 5) ## ----------------------------------------------------------------------------- # Plot at the agent-level plot(goutnet, level="agent", label.distance = 6) ## ----------------------------------------------------------------------------- # Plot connections to placebo via a two-parameter dose-response function (e.g. Emax) plot(goutnet, level="agent", doselink = 2, remove.loops = TRUE, label.distance = 6) ## ----results="hide"----------------------------------------------------------- # Colour vertices by agent plot(goutnet, v.color = "agent", label.distance = 5) ## ----results="hide", message=FALSE, warning=FALSE----------------------------- # Run a random effect split NMA using the alogliptin dataset alognet <- mbnma.network(alog_pcfb) nma.alog <- nma.run(alognet, method="random") ## ----------------------------------------------------------------------------- print(nma.alog) # Draw plot of NMA estimates plotted by dose plot(nma.alog)