A word embeddings-based semi-supervised model for document scaling Watanabe (2020) <doi:10.1080/19312458.2020.1832976>.
    LSS allows users to analyze large and complex corpora on arbitrary dimensions with seed words exploiting efficiency of word embeddings (SVD, Glove).
    It can generate word vectors on a users-provided corpus or incorporate a pre-trained word vectors.
| Version: | 1.5.0 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | methods, quanteda (≥ 2.0), quanteda.textstats, stringi, digest, Matrix, RSpectra, proxyC, stats, ggplot2, ggrepel, reshape2, locfit | 
| Suggests: | testthat, spelling, knitr, rmarkdown, wordvector, irlba, rsvd, rsparse | 
| Published: | 2025-09-12 | 
| DOI: | 10.32614/CRAN.package.LSX | 
| Author: | Kohei Watanabe [aut, cre, cph] | 
| Maintainer: | Kohei Watanabe  <watanabe.kohei at gmail.com> | 
| BugReports: | https://github.com/koheiw/LSX/issues | 
| License: | GPL-3 | 
| URL: | https://koheiw.github.io/LSX/ | 
| NeedsCompilation: | no | 
| Language: | en-US | 
| Citation: | LSX citation info | 
| Materials: | NEWS | 
| CRAN checks: | LSX results |