HTSCluster: Clustering High-Throughput Transcriptome Sequencing (HTS) Data
A Poisson mixture model is implemented to cluster genes from high-
    throughput transcriptome sequencing (RNA-seq) data. Parameter estimation is
    performed using either the EM or CEM algorithm, and the slope heuristics are
    used for model selection (i.e., to choose the number of clusters).
| Version: | 2.0.11 | 
| Depends: | R (≥ 2.10.0) | 
| Imports: | edgeR, plotrix, capushe, grDevices, graphics, stats | 
| Suggests: | HTSFilter, Biobase | 
| Published: | 2023-09-05 | 
| DOI: | 10.32614/CRAN.package.HTSCluster | 
| Author: | Andrea Rau, Gilles Celeux, Marie-Laure Martin-Magniette, Cathy Maugis-
    Rabusseau | 
| Maintainer: | Andrea Rau  <andrea.rau at jouy.inra.fr> | 
| License: | GPL (≥ 3) | 
| NeedsCompilation: | no | 
| Citation: | HTSCluster citation info | 
| Materials: | README, NEWS | 
| In views: | Omics | 
| CRAN checks: | HTSCluster results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=HTSCluster
to link to this page.