Integrate Item Response Theory (IRT) and Federated Learning to estimate traditional IRT models, including the 2-Parameter Logistic (2PL) and the Graded Response Models, with enhanced privacy. It allows for the estimation in a distributed manner without compromising accuracy. A user-friendly 'shiny' application is included.
| Version: | 1.1.0 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | purrr, pracma, shiny, httr, callr, DT, ggplot2, shinyjs | 
| Suggests: | testthat (≥ 3.0.0) | 
| Published: | 2024-09-28 | 
| DOI: | 10.32614/CRAN.package.FedIRT | 
| Author: | Biying Zhou [cre], Feng Ji [aut] | 
| Maintainer: | Biying Zhou <zby.zhou at mail.utoronto.ca> | 
| License: | MIT + file LICENSE | 
| NeedsCompilation: | no | 
| CRAN checks: | FedIRT results | 
| Reference manual: | FedIRT.html , FedIRT.pdf | 
| Package source: | FedIRT_1.1.0.tar.gz | 
| Windows binaries: | r-devel: FedIRT_1.1.0.zip, r-release: FedIRT_1.1.0.zip, r-oldrel: FedIRT_1.1.0.zip | 
| macOS binaries: | r-release (arm64): FedIRT_1.1.0.tgz, r-oldrel (arm64): FedIRT_1.1.0.tgz, r-release (x86_64): FedIRT_1.1.0.tgz, r-oldrel (x86_64): FedIRT_1.1.0.tgz | 
| Old sources: | FedIRT archive | 
Please use the canonical form https://CRAN.R-project.org/package=FedIRT to link to this page.