DynTxRegime: Methods for Estimating Optimal Dynamic Treatment Regimes
Methods to estimate dynamic treatment regimes using Interactive
  Q-Learning, Q-Learning, weighted learning, and value-search methods based on 
  Augmented Inverse Probability Weighted Estimators and Inverse Probability
  Weighted Estimators. Dynamic Treatment Regimes: Statistical Methods for 
  Precision Medicine, Tsiatis, A. A., Davidian, M. D., Holloway, S. T., and Laber, E. B., 
  Chapman & Hall/CRC Press, 2020, ISBN:978-1-4987-6977-8.
| Version: | 4.16 | 
| Depends: | methods, modelObj, stats | 
| Imports: | kernlab, rgenoud, dfoptim | 
| Suggests: | MASS, rpart, nnet | 
| Published: | 2025-05-03 | 
| DOI: | 10.32614/CRAN.package.DynTxRegime | 
| Author: | Shannon T. Holloway [aut, cre],
  E. B. Laber [aut],
  K. A. Linn [aut],
  B. Zhang [aut],
  M. Davidian [aut],
  A. A. Tsiatis [aut] | 
| Maintainer: | Shannon T. Holloway  <shannon.t.holloway at gmail.com> | 
| License: | GPL-2 | 
| NeedsCompilation: | no | 
| Materials: | NEWS | 
| In views: | CausalInference | 
| CRAN checks: | DynTxRegime results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=DynTxRegime
to link to this page.