| Type: | Package | 
| Title: | Clinical and Laboratory Standards Institute (CLSI) EP15-A3 Calculations | 
| Version: | 0.1.0 | 
| Maintainer: | Claucio Antonio Rank Filho <claucio.filho@hitechnologies.com.br> | 
| Description: | Calculations of "EP15-A3 document. A manual for user verification of precision and estimation of bias" CLSI (2014, ISBN:1-56238-966-1). | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.2.3 | 
| Depends: | R (≥ 4.0) | 
| Imports: | stats, dplyr, tidyr | 
| VignetteBuilder: | knitr | 
| Suggests: | knitr, rmarkdown | 
| NeedsCompilation: | no | 
| Packaged: | 2023-11-10 13:01:20 UTC; claucio | 
| Author: | Claucio Antonio Rank Filho [aut, cre] | 
| Repository: | CRAN | 
| Date/Publication: | 2023-11-10 19:43:23 UTC | 
Calculate bias validation interval
Description
Calculate bias validation interval
Usage
bias_validation_interval(TV, m, se_c)
Arguments
| TV | True value | 
| m | factor | 
| se_c | SE Combined | 
Value
named list with the interval
Calculate the UVL factor
Description
Calculate the UVL factor
Usage
calculate_F_uvl(nsamp = 1, df, alpha = 0.05)
Arguments
| nsamp | n samples in the study | 
| df | degres of freedom | 
| alpha | confidence level | 
Value
Uvl factor
Calculate ANOVA Results and Imprecision Estimates
Description
Calculate ANOVA Results and Imprecision Estimates
Usage
calculate_aov_infos(ep_15_table)
Arguments
| ep_15_table | table generated from create_table_ep_15() | 
Value
Named list with ANOVA Results and Imprecision Estimates
Examples
calculate_aov_infos(create_table_ep_15(CLSIEP15::ferritin_long, data_type = 'long'))
Calculate bias interval from TV
Description
Calculate bias interval from TV
Usage
calculate_bias_interval(
  scenario,
  nrun,
  nrep,
  SWL,
  SR,
  nsamples,
  expected_mean,
  user_mean,
  ...
)
Arguments
| scenario | Choosed scenario from section 3.3 of EP15-A3 | 
| nrun | Number of runs | 
| nrep | number of repetitions per run (n0) | 
| SWL | S within laboratory (obtained from anova) | 
| SR | S repetability (obtained from anova) | 
| nsamples | total number of samples tested usual 1 | 
| expected_mean | Expected mean or TV | 
| user_mean | Mean of all samples (obtained from anova) | 
| ... | additional parameters necessary for processing the choosed scenario | 
Value
a named list with the defined mean, the interval significance (user mean should be in for approval), and total bias (user mean - TV)
Examples
calculate_bias_interval(scenario = 'E',
nrun = 7,
nrep = 5,
SWL = .042,
SR = .032,
nsamples = 2,
expected_mean = 1,
user_mean = .94
)
Calculate degres of freedom within-lab as specified in appendix B
Description
Calculate degres of freedom within-lab as specified in appendix B
Usage
calculate_dfWL(cvr_manufacture, cvwl_manufacture, k, n0, N)
Arguments
| cvr_manufacture | CV repeatability informed by the manufacturer | 
| cvwl_manufacture | CV within-lab informed by the manufacturer | 
| k | the number of runs | 
| n0 | the “average” number of results per run | 
| N | the total number of replicates | 
Value
dfwl
Calculate degrees of freedom of SE C (SE combined) given a selected scenario and additional parameters necessary for the scenario
Description
Calculate degrees of freedom of SE C (SE combined) given a selected scenario and additional parameters necessary for the scenario
Usage
calculate_df_combined(scenario, ...)
Arguments
| scenario | Scenario (A, B, C, D, E) | 
| ... | additional parameters necessary for the scenario | 
Value
DF
Calculate M
Description
Calculate M
Usage
calculate_m(df, conf.level = 95, nsamples = 1)
Arguments
| df | degrees of freedom | 
| conf.level | confidence interval | 
| nsamples | number of samples | 
Value
m factor
Calculate n0
Description
Calculate n0
Usage
calculate_n0(long_result_table)
Arguments
| long_result_table | table generated by create_table_ep_15 function | 
Value
The n0 number which refers to Number of Results per Run
Calculate SE combined based on SE X and SE RM
Description
Calculate SE combined based on SE X and SE RM
Usage
calculate_se_c(se_x, se_rm)
Arguments
| se_x | SE X | 
| se_rm | SE RM | 
Value
SE C
Calculate SE RM given a scenario and a list of additional args that can change based on the selected scenario or sub scenario
Description
Calculate SE RM given a scenario and a list of additional args that can change based on the selected scenario or sub scenario
Usage
calculate_se_rm(scenario, additional_args)
Arguments
| scenario | scenario (A, B, C, D, E) | 
| additional_args | additional arguments list | 
Value
SE RM
Calculate SE RM for scenario A when f the manufacturer supplies an “expanded uncertainty” (abbreviated by uppercase “U”) for the TV and coverage e.g. 95 or 99,
Description
Calculate SE RM for scenario A when f the manufacturer supplies an “expanded uncertainty” (abbreviated by uppercase “U”) for the TV and coverage e.g. 95 or 99,
Usage
calculate_se_rm_a_Ucoverage(U, coverage)
Arguments
| U | expanded uncertainty | 
| coverage | coverage | 
Value
SE RM
Calculate SE RM for scenario A when f the manufacturer supplies an “expanded uncertainty” (abbreviated by uppercase “U”) for the TV and the “coverage factor” (abbreviated by “k”)
Description
Calculate SE RM for scenario A when f the manufacturer supplies an “expanded uncertainty” (abbreviated by uppercase “U”) for the TV and the “coverage factor” (abbreviated by “k”)
Usage
calculate_se_rm_a_Uk(U, k)
Arguments
| U | expanded uncertainty | 
| k | coverage factor | 
Value
SE RM
Calculate SE RM for scenario A when f the manufacturer supplies lower and upper limits and coverage confidence interval (95 or 99...)
Description
Calculate SE RM for scenario A when f the manufacturer supplies lower and upper limits and coverage confidence interval (95 or 99...)
Usage
calculate_se_rm_a_lowerupper(upper, lower, coverage)
Arguments
| upper | upper limit | 
| lower | lower limit | 
| coverage | coverage | 
Value
SE RM
Calculate SE RM for scenario A when “standard error” or “standard uncertainty” (abbreviated by lowercase “u”) or “combined standard uncertainty” (often denoted by “uC ”)
Description
Calculate SE RM for scenario A when “standard error” or “standard uncertainty” (abbreviated by lowercase “u”) or “combined standard uncertainty” (often denoted by “uC ”)
Usage
calculate_se_rm_a_u(u)
Arguments
| u | “standard error” or “standard uncertainty” (abbreviated by lowercase “u”) or “combined standard uncertainty” (often denoted by “uC ”) | 
Value
SE RM
Calculate SE RM for scenario B or C If the reference material has a TV determined by PT or peer group results
Description
Calculate SE RM for scenario B or C If the reference material has a TV determined by PT or peer group results
Usage
calculate_se_rm_scenario_b_c(sd_rm, nlab)
Arguments
| sd_rm | SD RM | 
| nlab | number of lab or peer group results | 
Value
SE RM
Calculate SE RM for scenario D or E If the TV represents a conventional quantity value or When working with a commercial QC material supplied with a TV for which the standard error cannot be estimated
Description
Calculate SE RM for scenario D or E If the TV represents a conventional quantity value or When working with a commercial QC material supplied with a TV for which the standard error cannot be estimated
Usage
calculate_se_rm_scenario_d_e()
Value
SE RM
Calculate SE x
Description
Calculate SE x
Usage
calculate_se_x(nrun, nrep, SWL, SR)
Arguments
| nrun | Run number | 
| nrep | Number of repetitions per run n0 | 
| SWL | SWL from aov table | 
| SR | SR from aov table | 
Value
SE X
Calculate upper verification limit
Description
Generic function for calculating UVL the return is a named list and cv_uvl_r and cv_uvl_wl depends on what is the input (S or CV) if the input is SR and SWL the returns is S
Usage
calculate_uvl_info(aov_return, nsamp = 1, cvr_or_sr, cvwl_or_swl)
Arguments
| aov_return | Return of calculate_aov_info() | 
| nsamp | number of samples in the experiment | 
| cvr_or_sr | Desirable CV or S repetability | 
| cvwl_or_swl | Desirable CV or S within-lab | 
Value
Named list with UVL params
Examples
 data <- create_table_ep_15(ferritin_wider)
 aov_t <- calculate_aov_infos(data)
 calculate_uvl_info(aov_t, nsamp = 5, cvr_or_sr = .43, cvwl_or_swl = .7)
Create table for precision calculations
Description
Create table for precision calculations
Usage
create_table_ep_15(data, data_type = "wider")
Arguments
| data | a long or a wider data.frame with the same structure of CLSIEP15::ferritin_long or CLSIEP15::ferritin_wider | 
| data_type | c('wider', 'long') | 
Value
a data.frame with renamed columns and structure adjustments
Examples
data <- create_table_ep_15(ferritin_long, data_type = "longer")
Reference of degrees of freedon based on tau given in the CLSI Manual
Description
Reference of degrees of freedon based on tau given in the CLSI Manual
Usage
dfc_references
Format
'dfc_references' A data frame with 390 rows and 4 columns:
- tau
- tau 
- df
- degrees of freedon 
- labs
- number of labs or peers 
- runs
- number of runs 
...
Source
CLSI EP15-A3
Ferrtin data used in CLSI document examples in wide format
Description
Ferrtin data used in CLSI document examples in wide format
Usage
ferritin_long
Format
'ferritin_long' A data frame with 25 rows and 3 columns:
- rep
- Repetition of sample 
- name
- Run of the Runs obtained from 5 distinct days 
- value
- result of the observation 
...
Source
CLSI EP15-A3
Ferrtin data used in CLSI document examples in wide format
Description
Ferrtin data used in CLSI document examples in wide format
Usage
ferritin_wider
Format
'ferritin_wider' A data frame with 5 rows and 6 columns:
- rep
- Repetition of sample 
- Run_1, Run_2, Run_3, Run_4, Run_5
- Runs from 5 distinct days 
...
Source
CLSI EP15-A3