BMEmapping: Spatial Interpolation using Bayesian Maximum Entropy (BME)
    Provides an accessible and robust implementation of core BME 
    methodologies for spatial prediction. It enables the systematic integration 
    of heterogeneous data sources including both hard data (precise 
    measurements) and soft interval data (bounded or uncertain observations) 
    while incorporating prior knowledge and supporting variogram-based spatial 
    modeling. The BME methodology is described in Christakos (1990) 
    <doi:10.1007/BF00890661> and Serre and Christakos (1999) 
    <doi:10.1007/s004770050029>.
| Version: | 1.2.2 | 
| Depends: | R (≥ 3.5) | 
| Imports: | ggplot2, gridExtra, mvtnorm, stats, utils | 
| Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) | 
| Published: | 2025-08-19 | 
| DOI: | 10.32614/CRAN.package.BMEmapping | 
| Author: | Kinspride Duah  [aut, cre, cph],
  Yan Sun [aut] | 
| Maintainer: | Kinspride Duah  <kinspride2020 at gmail.com> | 
| BugReports: | https://github.com/KinsprideDuah/BMEmapping/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/KinsprideDuah/BMEmapping | 
| NeedsCompilation: | no | 
| Materials: | README, NEWS | 
| CRAN checks: | BMEmapping results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=BMEmapping
to link to this page.