BGVAR: Bayesian Global Vector Autoregressions
Estimation of Bayesian Global Vector Autoregressions (BGVAR) with different prior setups and the possibility to introduce stochastic volatility. Built-in priors include the Minnesota, the stochastic search variable selection and Normal-Gamma (NG) prior. For a reference see also Crespo Cuaresma, J., Feldkircher, M. and F. Huber (2016) "Forecasting with Global Vector Autoregressive Models: a Bayesian Approach", Journal of Applied Econometrics, Vol. 31(7), pp. 1371-1391 <doi:10.1002/jae.2504>. Post-processing functions allow for doing predictions, structurally identify the model with short-run or sign-restrictions and compute impulse response functions, historical decompositions and forecast error variance decompositions. Plotting functions are also available. The package has a companion paper: Boeck, M., Feldkircher, M. and F. Huber (2022) "BGVAR: Bayesian Global Vector Autoregressions with Shrinkage Priors in R", Journal of Statistical Software, Vol. 104(9), pp. 1-28 <doi:10.18637/jss.v104.i09>.
| Version: | 2.5.9 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | abind, bayesm, coda, GIGrvg, graphics, knitr, MASS, Matrix, methods, parallel, Rcpp (≥ 1.0.3), RcppParallel, readxl, stats, stochvol (≥ 3.0.3), utils, xts, zoo | 
| LinkingTo: | Rcpp, RcppArmadillo, RcppProgress, RcppParallel, stochvol, GIGrvg | 
| Suggests: | rmarkdown, testthat (≥ 2.1.0) | 
| Published: | 2025-09-22 | 
| DOI: | 10.32614/CRAN.package.BGVAR | 
| Author: | Maximilian Boeck  [aut, cre],
  Martin Feldkircher  [aut],
  Florian Huber  [aut],
  Darjus Hosszejni  [ctb] | 
| Maintainer: | Maximilian Boeck  <maximilian.boeck at fau.de> | 
| BugReports: | https://github.com/mboeck11/BGVAR/issues | 
| License: | GPL-3 | 
| URL: | https://github.com/mboeck11/BGVAR | 
| NeedsCompilation: | yes | 
| SystemRequirements: | GNU make | 
| Language: | en-US | 
| Citation: | BGVAR citation info | 
| Materials: | README, NEWS | 
| In views: | TimeSeries | 
| CRAN checks: | BGVAR results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=BGVAR
to link to this page.