
Using An Export Manager

James P. Gilbert

2025-09-24

Contents
Introduction 1

Creating the export manager for a package 1

Saving large results sets with a batch operation 2
Setup . 2
Exporting a database query result . 2
Exporting an Andromeda result in batch . 3

Creating a results manifest file 3

Introduction
OHDSI studies often have very specific requirements in terms of exposing patient details.

Creating the export manager for a package
The table Specification must be definied for a table to be exported. Crucially, the data types, column names,
primary keys and valid settings are always validated at the time of export. You cannot export data that does
not conform to this model, so make sure that this model matches the result schema that the data are being
imported in to. It is assumed that package developers will include this in the unit tests of their package.
library(ResultModelManager)

tableSpecification <- dplyr::tibble(
tableName = c(

"my_table", "my_table", "my_table", "my_table", "my_table", "my_table", "my_table",
"my_andromeda_table", "my_andromeda_table", "my_andromeda_table"

),
columnName = c(

"database_id", "target_cohort_id", "comparator_cohort_id", "target_count", "comparator_count", "rr", "p_value",
"database_id", "covariate_id", "value"

),
primaryKey = c(

"yes", "yes", "no", "no", "no", "no", "no",
"yes", "yes", "no"

),
minCellCount = c(

"no", "no", "no", "yes", "yes", "no", "no",
"no", "no", "no"

1

),
dataType = c(

"varchar(255)", "int", "int", "int", "int", "float", "float",
"varchar(255)", "bigint", "float"

)
)

Per database export folder is a good principle to follow
exportDir <- "output_folder/example_cdm"
exportManager <- createResultExportManager(

tableSpecification = tableSpecification,
exportDir = exportDir,
databaseId = "example_cdm"

)

Saving large results sets with a batch operation
As data sets can easily exceed system memory, any operations should be performed in batch (via the export
manager’s exposed functions with a callback), or exporting from an Andromeda object.

Setup
First we will connect to a test database and create some test data:
connection <- DatabaseConnector::connect(server = ":memory:", dbms = "sqlite")
schema <- "main"

Some made up counts
data <- data.frame(

target_cohort_id = 1:100,
comparator_cohort_id = 101:200,
target_count = stats::rpois(100, lambda = 10),
target_time = stats::rpois(100, 100000),
comparator_count = stats::rpois(100, lambda = 5),
comparator_time = stats::rpois(100, 100000)

)

DatabaseConnector::insertTable(connection, data = data, tableName = "result_table", databaseSchema = schema)

Exporting a database query result

sql <- "SELECT * FROM @schema.result_table"
exportManager$exportQuery(connection = connection, sql = sql, exportTableName = "my_table", schema = schema)

It is vital to ensure that the returned result set conforms to your data model, including the primary key
columns specified. Otherwise, export validation will fail to prevent errors in exported csv files.

If you look at the file output_folder/example_cdm/my_table.csv you will notice that the database_id
field is populated, you should not add this in SQL as it will be completed per database automatically.

Note that this result set is incomplete - we’re not exporting fields that would be computed using an R
function, just the values that are exported from an sql query.

2

Performing R operations

In order to perform R operations (for example, computing a rate ratio or p-value that would be difficult to
compute in SQL) it is recommended that is performed inside a callback function to the exportQuery method.
Modifying the above to include a rate ratio calculation using the rateratio.test package:
library(rateratio.test)

transformation <- function(rows, pos) {
rrResult <- rateratio.test(

x = c(row$target_count, row$comparator_count),
n = c(row$target_time, row$comparator_time),
RR = 1,
conf.level = 0.95

)

row$rr <- rrResult$estimate
row$p_value <- rrResult$p.value

return(row)
}

exportManager$exportQuery(connection,
sql,
"my_table",
transformFunction = transformation,
transformFunctionArgs = list(),
append = FALSE,
schema = schema

)

Exporting an Andromeda result in batch
It is generally inadvisable to collect an entire andromeda table for export in to the R session before saving to
disk. Instead, it is best practice to use batch operations as follows
andr <- Andromeda::andromeda()
andr$my_andromeda_table <- data.frame(covariate_id = 1:1e4, value = stats::runif(1e4))

first <- TRUE
writeBatch <- function(batch) {

exportManager$exportDataFrame(batch, "my_andromeda_table", append = first)
first <<- FALSE
we don't want to return anything, just write the result to disk
return(invisible(NULL))

}

Andromeda::batchApply(andr$my_andromeda_table, writeBatch)

Creating a results manifest file
Export manifests contain an sha256 hash of all files exported. This can be useful to see if a file was modified
or corrupted before inclusion. To export the manifest of files within an export directory:

3

exportManger$writeManifest(packageName = "analytics_package", packageVersion = packageVersion("analytics_package"))

4

	Introduction
	Creating the export manager for a package
	Saving large results sets with a batch operation
	Setup
	Exporting a database query result
	Exporting an Andromeda result in batch

	Creating a results manifest file

