

leveraging open source for
web services development

Chris Peltz and Claire Rogers
Hewlett Packard Company

May 2003

©2003 Hewle t t - Packard Company

©2003 HEWLETT-PACKARD COMPANY
2

INTRODUCTION ...3

SELECTING A LINUX DISTRIBUTION..3

INSTALLING AN OPEN SOURCE DATABASE ...4

SELECTING A JAVA ENVIRONMENT...5

DEVELOPING THE JAVA COMPONENTS ..6

CONFIGURING THE WEB SERVICES PLATFORM..9
INSTALLING THE J2EE WEB CONTAINER...9
INSTALLING THE WEB SERVICES CONTAINER...10

DEVELOPING THE WEB SERVICE ..11
CREATING THE WEB SERVICES INTERFACE ..11
GENERATING THE SERVER-SIDE BINDINGS ..12
PACKAGING AND DEPLOYING THE SERVICE...13

BUILDING THE APPLICATION WITH ANT ...14
CONFIGURING THE BUILD ENVIRONMENT..14
CREATING THE BUILD SCRIPT ..15
RUNNING THE ANT BUILD SCRIPT..16

TESTING THE WEB SERVICE ...17
INVOKING THE SERVICE ..17
MONITORING THE SERVICE..17
TESTING THE SERVICE...18

CONCLUSION ..21

REFERENCES ..21

©2003 HEWLETT-PACKARD COMPANY
3

introduction

Over the past year, web services have been positioned as a key enabler to application integration and B2B
integration. Companies such as Amazon.com and Nordstrom’s have already deployed useful web services. Many
software development vendors have made large investments in supporting the web services development process.
However, for many companies just beginning to investigate the value of web services, the cost required to get
started might pose a huge barrier. How then can development shops start to explore this new and emerging
technology?

If cost is an issue during the investigation stage, high-priced development tools may not be an option, and teams
may often have to look to open source to get started. This paper takes an in-depth look at the tools that can be used
to get started on web services development. It follows a common scenario for taking an existing software asset
written in Java, which is then exposed with a web service interface. Java was chosen because of the wide variety of
open source tools available that supports the creation of web services from existing Java components.

The reader will be led through the entire development lifecycle, including the development, deploying, and testing
of the web services and related Java components. The entire application described here was developed, deployed,
and tested on an HP laptop running the Debian Linux operating system. Pre-configuration included installation of the
MySQL Open Source database and the BEA JRockit Linux JVM. The Eclipse environment was used in the creation of
the Java components, while Apache Axis and Tomcat were used to develop the web service. Apache Ant and
Eclipse were then used to deploy the web service, and PushToTest TestMaker was used for testing it.

This paper is primarily intended for developers exploring development of web services using open source tools and
platforms. It assumes the reader has some basic knowledge of Java web services and Linux. The overall objective is
that readers will gain valuable knowledge in getting started with web services in a cost-effective manner.
Additionally, this paper points out various best practices learned during the development exercise.

selecting a Linux distribution

In today’s economy, many companies are looking for ways to cut costs by using Linux as an alternative to a
commercial operating system. Linux is a UNIX-based operating system that has inherited the same capabilities as
UNIX. Developed under the GNU General Public License, the source code for Linux is freely available to use,
distribute and modify. However, the recent popularity of Linux may not be because of the low cost but because
Linux is a new way of developing different types of applications. The Internet capabilities of Linux are diverse,
thoroughly tested, and tightly integrated into the operating system. Therefore, it makes sense that Linux is being
considered for web services development.

While there are many flavors of Linux, the top three Linux distributions are RedHat, SuSE, and Debian. If you are
looking for a distribution that closes the gap between Unix and Windows and you are a novice Linux developer,
RedHat is a good choice. SuSE Linux provides a desktop-like operating system that can also be used as a high-
powered server. It is a good choice for existing Windows users. Debian Linux is the most vendor-neutral Linux
distribution, managed by a community of developers rather than a company. Debian is typically the distribution
used by well-seasoned Linux developers.

Debian Linux was chosen for this example for several reasons [MCC]. Debian has a strict open-source-only policy,
and does not contain any license-restricted code or utilities. It has a vigorous quality program, and avoids the types
of issues that have recently plagued certain commercial distributions. The ability to port applications developed
using Debian to other Linux platforms and to non-Linux versions of Unix is potentially made easier. Finally, Debian
has a very easy to use interface for installing and updating software packages. This is an important consideration if
you are not sure what packages have to be installed and where they go on the system. Debian simplifies this by

©2003 HEWLETT-PACKARD COMPANY
4

automatically identifying dependencies and installing them with only a few clicks.

We found Debian operates very much like HP-UX, other than installation and packaging requirements. We used
most of the same Unix commands while working within the shell. The graphical user interface, GNOME, closely
resembles Windows. The GNOME interface provides a nice environment to navigate, open shells and run Internet
browsers.

There were some key learnings from the installation:

1. During installation we learned a lot about how software is packaged on Linux. There are RedHat packages
(RPM) and Debian (DEB) packages. RPMs can be loaded with the “rpm” tool, and Debian packages are
loaded with the “dpkg” tool.

2. In addition to using these tools, we also gained experience with the aptitude tool. This is an interface that
lets you view installed and uninstalled packages on the machine. From the interface, you can quickly
search for new packages and then automatically install a selected package and all the dependencies. The
list of tools presented in aptitude is maintained in a repository. For example, you can configure aptitude to
pull from HP’s Programmer’s Toolkit (PTK) on Progeny (http://ptk.progeny.com), which provides a list of
tools for doing application development.

Overall, Linux provides a set of point tools that can be installed onto the machine. It doesn’t provide a “single”
development platform in that you have the flexibility to pick and choose which products to install. The downside to
this is that developers have to do a lot of this work themselves. The good news is that many Linux distributions
provide robust tools to assist in the installation process.

install ing an open source database

The demo that we built returned weather forecasts for a specified zip code. While there are many web sites
available for retrieving weather, we wanted to deliver this information as a web service using SOAP. To develop
this service, we needed a data source that could manage the forecast information. We decided to model the
forecast information in an SQL database, which could then be retrieved from a Java application using JDBC. The
next step was to select an appropriate database, and then install and configure it for this project.

The two most popular open source databases on the market today are MySQL and PostgreSQL [PAV]. PostgreSQL
is considered a more robust database engine when it comes to support for database features like stored procedures
and triggers. On the other hand, MySQL was designed from the beginning to maximize performance for web
applications at the expense of not delivering every DBMS feature [MYS]. Since performance was a concern for us,
and we did not require use of some of the advanced database features, we selected MySQL for this example. For
this development, we wanted something that was simple to install and use so that we could quickly move into the
development of the Java application.

Our first step was downloading the MySQL package. There were two types of Linux packages that are available for
the latest production release of MySQL 4.0: a TAR.GZ compressed version and an RPM RedHat packaged version.
We wanted to be able to download and install the database without having to worry about doing any
configuration steps manually. With the TAR.GZ option, we would have had to add the appropriate entry to INIT.D
to run the database at startup. RPM files can automatically start up the database and place the appropriate entries
in INIT.D.

Since we were using Debian, we were concerned with using an RPM package type. We discovered that there are
two mechanisms within Debian to install RPM packages. You can install the RPM directly using the rpm tool, or you
can use the alien tool to convert the RPM package to a Debian package. Because of some required dependencies

http://ptk.progeny.com

©2003 HEWLETT-PACKARD COMPANY
5

on the RPM files, we were not successful at installing or converting the RPM files that we downloaded from the
http://www.mysql.com/ website.

We discovered that the main Debian website (http://www.debian.org/) provided Debian packages for MySQL.
However, the MySQL version available on this site was 3.23.49, not the 4.0 production release available through
MySQL.com. We decided to go with the 3.23.49 version because we felt more comfortable with the fact that it had
been tested for Debian. The web page for Debian MySQL provided a list of dependencies required for the MySQL
server. For the laptop we were using, we had to install mysql-common, libmysqlclient10, libdb-mysql-perl, and
mysql-client. After completing the install of mysql-server, the system automatically started the mysqld and placed the
appropriate startup information in INIT.D. In addition to installing the server, we also downloaded MySQL
Connector/J 3.0, a Type-4 JDBC driver for connecting Java applications to the MySQL database.

After installation, the first step was to create the required database tables for the weather forecast application. We
designed two tables, one to maintain zip code information and another to hold the weather forecasts. We created
both tables under a “weatherdb” database, and then loaded the tables with sample data. We also created a new
user called “hpuser” with password “hppwd” that had permissions to query from any table under the weatherdb
database.

At this point, the MySQL database was fully installed, configured, and loaded. The final step was to perform some
simple tests using the mysql command to test database log on. We noticed during our testing that when we
specified 127.0.0.1 or the actual IP address, it failed to connect. After working on this, we learned that the
“localhost” reference uses local UNIX sockets, while an IP address like 127.0.0.1 uses TCP/IP connections. In
looking over the MySQL configuration, we discovered that the database was configured with the option skip-
networking turned on. Disabling this fixed our problem in connecting to the database and allowed us to make a
connection through a remote JDBC call.

The following were some of our key learnings from using open source databases on the project:

1. MySQL is a very stable relational database for building web-based applications. It was very easy to install,
configure, and use. Other than the change required in turning off the “skip-networking” option, the
database worked out of the box for our application.

2. There are many different packaging formats for applications (ZIP, TAR, RPM, TAR). Not every software
package is readily available for every Linux distribution, and in some cases, only older versions of a given
package might be available. Choice of package type can impact ease of installation and configuration.
One should carefully consider these installation needs when evaluating and selecting a Linux distribution.

selecting a Java environment

One of the first steps required in doing the development is to select an appropriate Linux Java Development Kit
(JDK). The JDK was required to run a number of components in this example, including Eclipse, Apache Axis, and
the application itself. There are a number of JDKs currently available for Linux. The most popular ones on the market
today are the J2SE SDK from Sun, the Blackdown (http://www.blackdown.org/) JDK, and BEA WebLogic JRockit.
The Blackdown JDK is developed by Blackdown.org, a worldwide community of developers dedicated to the
development of Java on the Linux platform. The project is based on the J2SE source code that is licensed from Sun.
The JRockit JVM was originally developed by Appeal, which was later acquired by BEA.

The JRockit JVM was chosen for this example for performance reasons. JRockit was designed to deliver superior
server-side performance compared to other JVMs. JRockit accomplishes this improved performance through its
threading model [BEA]. JRockit uses an MxN threading model, which uses N process threads to run M Java threads.
This is compared to other JVM implementations that use either a “green threads” or “native threads” approach.

http://www.mysql.com/
http://www.debian.org/
http://www.blackdown.org/

©2003 HEWLETT-PACKARD COMPANY
6

The “thin threads” model used by JRockit has been shown to take up less memory, in addition to reducing the
amount of context switching required by the JVM. The end result is higher scalability for thread-intensive
applications. A number of benchmarks have shown the performance that can be delivered with JRockit:

 The Volano Report [VOL] showed that JRockit could process 2036 messages per second as
compared to 1496 for the Sun VM and 1162 for Blackdown. The benchmark also showed that
JRockit could achieve over 6000 connections per second, compared to 410 for the Sun VM.

 Ammai’s JVM Performance Report [AMM] compared JRockit with the Sun JVM, both running the
JBoss application server on a Windows XP system. For the number of connections, JRockit
performed 89% better than the Sun HotSpot Server JVM. It also performed 76% better for the
number of requests that could be processed.

We downloaded JRockit directly from the BEA web site. Both 32-bit and 64-bit Linux versions are available for the
JRockit 8.1 SDK. After downloading the 32-bit version installation package, the JDK was installed into /opt/bea
and the PATH was updated to include /opt/bea/jrockit81_141_02/bin so that the Java tools could be located.

From this part of the exercise, we learned that there are a number of Java implementations to choose from for Linux
development. Most of them provide an adequate solution for doing Java development. The key factors are
determining which JDK provides (a) sufficient performance depending on the type of application being developed,
and (b) JVM stability while the application is running.

developing the Java components

The first step in the development was the creation of the Java components. Java programs can be developed using a
text editor such as VI or EMACS. However, aniIntegrated development environment (IDE) is often useful because it
lets you execute many common associated tasks (like compiling and running), and provides many features like
debugging and organizing projects, as well as wizards for creating certain Java components.

Linux Java developers have several choices when considering IDEs for creating Java applications. The most popular
open source IDEs are NetBeans (http://www.netbeans.org/) and Eclipse (http://www.eclipse.org/).

 NetBeans is an open source, cross-platform IDE written in Java. Currently it supports development
in Java, but you can add support for other languages. The source code for NetBeans is available
under the Sun Public License, an open source license very similar to the Mozilla Public License.

 Eclipse is an open, extensible IDE. It is extensible in that it is a foundation for constructing and
running integrated software development tools. Source code access and use is controlled through
the Common Public License, which allows individuals to create derivative works with worldwide
re-distribution rights that are royalty free [OBJ].

The main difference between Eclipse and NetBeans is that Eclipse is based on the Standard Widget Toolkit (SWT)
and NetBeans is Swing-based. There is a lot of debate in the industry over the two approaches. Swing is
considered more “cross-platform”, while SWT is considered by some to be faster and more appealing from a GUI
standpoint because the framework uses some of the underlying operating system graphics capabilities.

Eclipse’s strength lies in its ability to easily develop and integrate third-party tools into the development environment
by the use of plug-ins. While Java is the main development focus, there are tools available for doing C++

http://www.netbeans.org/
http://www.eclipse.org/

©2003 HEWLETT-PACKARD COMPANY
7

development and web services development. This open framework provides a feature-rich development environment
that allows the developer to efficiently create tools that integrate seamlessly into the Eclipse Platform1.

We downloaded Eclipse from the Eclipse (http://www.eclipse.org/) download site. We selected the Linux
(x86/GTK 2) version. After downloading the install package, we unzipped the package under the /opt directory.
We then set up the PATH environment variable to include the eclipse bin directory. At this point, we were ready to
run Eclipse via the eclipse command (/opt/eclipse/bin/eclipse).

Figure 1. The Eclipse development environment

Eclipse looks very similar to most commercial IDEs, with features for syntax-highlighting editor, incremental code
compilation, a source-level debugger, a class navigator, a file/project manager, and interfaces to standard source
control systems. The biggest difference with Eclipse is the idea of perspectives. Perspectives consist of views and
editors for working with the different resources in your application. For example, in the Java perspective, there is a
source code editor, a package explorer, a window that provides information about a particular object, as well as a
console for standard output. There are different perspectives for different languages and phases of the software
development life cycle.

The first step in our development was to create a Java project for the application. We created the project as a Java
perspective so that the appropriate views and editors would be displayed for Java. We then created our
WebService class by using the Eclipse Java class wizard, which automatically generates skeleton code for the class:

1 For example, HP is developing a number of Eclipse plug-ins to support OpenCall, OpenView, and other HP
software initiatives. See http://devresource.hp.com/ for more information.

http://www.eclipse.org/
http://devresource.hp.com/

©2003 HEWLETT-PACKARD COMPANY
8

Figure 2. Adding a new class in Eclipse

Next we added the appropriate code to retrieve the forecast information. The application takes a given zip code
and looks up the weather forecast for that area. Following is a partial listing of the code that did this.

public class Weather extends Object {public static Forecast getWeather(String zip)
 throws Exception {
 Connection conn = null;
 Forecast f = null;
 try {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 conn=DriverManager.getConnection("jdbc:mysql://localhost/weatherdb",
 "hpuser","hppwd");
 String select = “select * from zipcode where zipcode = ?”;
 PreparedStatement stmt = conn.prepareStatement(select);
 stmt.setString(1,zip);
 ResultsSet rs = stmt.executeQuery();
 rs.next();
 String city = rs.getString("city");
 String state = rs.getString("state");
 String date = "2003-04-02";

 select = "select * from forecast where zipcode = ? and dt = ?”;
 stmt = conn.prepareStatement(select);
 stmt.setString(1,zip);
 stmt.setString(2,date);
 rs = stmt.executeQuery();
 rs.next();
 f = new Forecast(zip,city,state,date, rs.getString("forecast"), rs.getByte("high"),
 rs.getByte("low"), rs.getByte("precip"));
 return f;
 }
}

Next we created the Forecast class. We created this class to act as a Value Object [ALU] to hold the forecast
information so that the web service exposed wasn’t “generic” (i.e., just a single string). This provided a cleaner and
more usable business interface for the web services client.

public class Forecast {
 public Forecast(String z, String c, String s, String d, String f, short h, short l,
 byte p) {
 zip = z;
 city = c;
 state = s;
 date = d;
 forecast = f;
 hi = h;
 low = l;
 precip = p;
 }
}

mysql://localhost/weatherdb

©2003 HEWLETT-PACKARD COMPANY
9

After building and running the application, there were several key learnings from this experience:

1. We encountered an error because we had not set up the Eclipse environment to use the MySQL JDBC
driver. To solve this problem, we added the mysql-connector.jar file into the Libraries for the Java Build
Path in the application project within Eclipse. Once the database was set up, we were able to build and
run a test of the application.

2. We found Eclipse to be similar to other IDEs. Eclipse brought together all of the tools we needed to be
successful at developing the Java code. If you are doing web application development, you can also take
advantage of plug-ins for communicating with most application servers.

3. While there are plug-ins available for Eclipse that worked, we also found some that didn’t work with our
application. The idea behind some of the plug-ins we found was to take them and change them to fit our
requirements.

Overall, Eclipse was a very simple tool to use for creating the Java application, with most of the same features that
are available in other commercial IDEs.

configuring the web services platform

This section explores the runtime environment required for executing the web services components. The runtime
environment consists of a J2EE web container and a web services container. For our example, we used Jakarta
Tomcat 4.0 for the J2EE web container and Apache Axis for the web services container.

installing the J2EE web container

A J2EE container is an entity that provides life cycle management, security, deployment, and runtime services to
J2EE components. A J2EE web container is a specific type of container that manages JSP and Servlet processing.
There are a number of J2EE web containers available such as Resin, JBoss, and Jetty, but we chose Tomcat because
it is the default container for Apache Axis. In addition, Tomcat is a widely used open source servlet engine and
compares well with commercial grade J2EE web containers. Benchmarks showed that the scalability of Tomcat was
comparable to commercial Servlet engines [GUI].

The first step in setting up the web services runtime environment was to install the latest version of Tomcat version
4.1.24, which was downloaded from the Apache Tomcat website (http://jakarta.apache.org/tomcat). We then
used the TAR command to install the server under /opt/jakarta-tomcat. Once the installation was complete, we also
had to configure the JAVA_HOME and CATALINA_HOME environment variables for Tomcat. We then started
Tomcat by running the startup.sh script in the $CATALINA_HOME/bin directory. We verified that Tomcat was
started successfully by viewing http://localhost:8080 from a Mozilla web browser.

Within Eclipse, we were also able to start and stop Tomcat with the installation of a Tomcat plug-in. This plug-in also
offers the capability of registering a Tomcat process with the Eclipse debugger, creating a Web archive (WAR)
project, etc. We downloaded this plug-in from http://www.sysdeo.com/eclipse/tomcatPlugin.html and unzipped it
into the /opt/eclipse/plugins directory. We could then start Eclipse and configure Tomcat appropriately. The
following illustrates the Tomcat integration within the Eclipse environment:

http://jakarta.apache.org/tomcat
http://localhost:8080
http://www.sysdeo.com/eclipse/tomcatPlugin.html

©2003 HEWLETT-PACKARD COMPANY
10

Figure 3. Eclipse with the Tomcat plug-in

At this point we were able to start and stop Tomcat from within Eclipse. We also saved this perspective within
Eclipse. This allowed us to use this perspective any time we wanted to create a web application that runs on
Tomcat.

installing the web services container

Web services are components that send and receive XML data across the Internet. Web services typically use SOAP
to define the XML message format and WSDL to describe the web service interface. The key benefits of SOAP
include vendor, platform, and language independence. What often makes web services development difficult is
encoding and decoding data between the SOAP format and the underlying business objects. While a SOAP
processing engine can be written from scratch, it is better to invest in a web services container that can manage the
SOAP processing activities.

The web services container is the overall platform or container that the web services will execute in. One of the
important requirements for a web services container is that it has to provide a SOAP service that manages the
sending, routing, and receiving of SOAP messages. This usually involves receiving the SOAP message and
mapping it to some back-end components. The other requirement is that the runtime environment has to be
responsible for managing the life cycle of the web services running on the platform. This might include things such
as configuration and lifecycle management.

Several toolkits exist to expose existing software components as web services. One of the better known offerings is
Apache Axis, an open source implementation of SOAP [APA]. We downloaded Apache Axis 1.1 RC2 from
http://www.apache.org/axis. We then installed Axis using the TAR command. Since Axis is deployed as a J2EE
web application2, we also had to copy the Axis webapps directory to the Tomcat webapps directory. We restarted
Tomcat and tested whether Axis had been deployed successfully by viewing http://localhost:8080/axis in the
browser:

2 A J2EE web application contains a variety of application components (servlets, JSPs, HTML) organized in a
specific directory structure for deployment purposes.

http://www.apache.org/axis
http://localhost:8080/axis

©2003 HEWLETT-PACKARD COMPANY
11

Figure 4. Testing Apache Axis installation

On this page we validated that Apache Axis was properly configured under Tomcat. The key learnings from setting
up the web services platform were:

1. We found in our research that Apache Axis is the only open source choice that offers a robust web
services platform. It was easy to configure, with Tomcat already configured as the default J2EE container.

2. It was easy to integrate the Eclipse IDE with the web services platform by using the Tomcat plug-in for
starting and stopping Tomcat from within the IDE.

developing the web service

After installing and configuring the web services container, our next major step was to create the web services
components. This involved creating a web services interface, the associated server-side bindings, and deploying the
necessary components to Apache Axis. For this part of the exercise, we used the command-line tools available from
Apache Axis to generate these web services components. We could have also used Eclipse to configure each of
these commands as “external tools” so that they could be run with one button click from the development
environment. In the section to follow, we show how we integrated Eclipse and Apache Ant as one solution to
simplify this development effort.

creating the web services interface

The web services interface is modeled using Web Services Description Language (WSDL). A WSDL document is
essentially an XML file that describes the data, messages, and operations that are exposed for a given web service.
If you are familiar with CORBA or COM, you can think of WSDL as the IDL for web services. Within the web
services programming world, the WSDL is the key for interoperability because any client can use this to quickly
determine how to interact with a given service.

There are two approaches that can be taken for creating a WSDL interface. A WSDL can be created from the
ground up and then later mapped to the back-end components. Or, a developer can start with their business logic
and have the WSDL automatically created. For complex business services, we usually recommend developers begin
with the WSDL design first. For this simple scenario that involves only one service request, we will use the automatic
WSDL generation approach. Within Apache Axis, this can be accomplished through the Java2WSDL utility:

$ java org.apache.axis.wsdl.Java2WSDL -o Weather.wsdl
 -l"http://localhost:8080/axis/services/weather" -n urn:weather
 -p"Weather" urn:weather weather.Weather

http://localhost:8080/axis/services/weather

©2003 HEWLETT-PACKARD COMPANY
12

The above command specifies the output WSDL file, the service location URL, the target namespace (urn:weather),
package to namespace mappings, and the name of the Java class to use. In this case, we wanted to generate the
WSDL from the Weather class we developed. In our first attempt at running this tool, we ran into a small problem in
reading the Forecast class. Java2WSDL requires all dependent classes to model a JavaBean, requiring each class to
have a default constructor. Since Forecast.java did not provide this, we had to make the necessary changes in the
code. At that point, we were able to generate a complete WSDL from the original Java components.

The Weather.wsdl file contains a set of data types, messages, operations, and SOAP bindings for the web service.
The following shows the XML complex type that was generated to represent the Forecast information returned by the
service:

<complexType name="Forecast">
 <sequence>
 <element name="zip" nillable="true" type="xsd:string"/>
 <element name="city" nillable="true" type="xsd:string"/>
 <element name="state" nillable="true" type="xsd:string"/>
 <element name="date" nillable="true" type="xsd:string"/>
 <element name="forecast" nillable="true" type="xsd:string"/>
 <element name="hi" type="xsd:short"/>
 <element name="low" type="xsd:short"/>
 <element name="precip" type="xsd:byte"/>
 </sequence>
</complexType>

In addition to the data types, a set of messages and operations are automatically created. Our service only has one
operation, getWeather. This operation is a basic request/response message, modeled with one request message for
the input and a second message for the output. The following portion of the WSDL document shows how the
messages and operations were defined:

<wsdl:message name="getWeatherResponse">
 <wsdl:part name="getWeatherReturn" type="tns2:Forecast"/>
</wsdl:message>
<wsdl:message name="getWeatherRequest">
 <wsdl:part name="in0" type="xsd:string"/>
</wsdl:message>
<wsdl:portType name="Weather">
 <wsdl:operation name="getWeather" parameterOrder="in0">
 <wsdl:input name="getWeatherRequest" message="impl:getWeatherRequest"/>
 <wsdl:output name="getWeatherResponse" message="impl:getWeatherResponse"/>
 </wsdl:operation>
</wsdl:portType>

The WSDL also contains the SOAP binding information and the definition of the service binding. These bindings
indicate the protocol to use and the URL location for the service:

<wsdl:service name="WeatherService">
 <wsdl:port name="weather" binding="impl:weatherSoapBinding">
 <wsdlsoap:address location="http://localhost:8080/axis/services/weather"/>
 </wsdl:port>
</wsdl:service>

generating the server-side bindings

The next major development step was to create the server-side bindings for the web service. These bindings allow us
to map the WSDL interface to the back-end Java components. Within Apache Axis, this is done through an
implementation class and a deployment descriptor, both generated through the WSDL2Java tool:

$ java org.apache.axis.wsdl.WSDL2Java -o . -s -p weather.ws Weather.wsdl

http://localhost:8080/axis/services/weather"/

©2003 HEWLETT-PACKARD COMPANY
13

The above command specifies the directory to place the output files and tells Axis to emit server-side bindings for the
web service. The “-p” option then specifies the package name to use for the generated Java files. The final
parameter indicates the WSDL file that should be used. As a result of running this command, a
WeatherSoapBindingImpl.java file was generated. By default, this file contains an empty implementation for the
service. The only change required was to add the appropriate code to invoke our original Weather class:

public weather.ws.Forecast getWeather(java.lang.String in) throws java.rmi.RemoteException
{
 weather.Weather w = new weather.Weather();
 weather.Forecast f = w.getWeather(in0);
 weather.ws.Forecast f1 = new weather.ws.Forecast();
 f1.setZip(f.zip);
 f1.setCity(f.city);
 f1.setState(f.state);
 return f1;
}

In the above code, notice the original call to Weather.getWeather() to retrieve the forecast for the given zip code.
This method returns a weather.Forecast object. However, when the WSDL2Java tool was run, it produced a
serializable version of the original Forecast class. The code here simply copies from the original Forecast object to
the serializable version. We then compiled the generated source files using javac.

packaging and deploying the service

Once done, we were ready to package the code and deploy it into the Apache Axis environment. To package the
service, we used the JAR utility to create a Java archive containing all of the classes created. Since Apache Axis is a
web application (webapp) under Tomcat, we copied this JAR file into the appropriate lib directory (/opt/Jakarta-
tomcat/webapps/axis/WEB-INF/lib). In addition to copying over the Weather.jar file, we also had to copy over
the mysql-connector.jar library because this was a required dependency for our service.

The final step in the service creation process was to register the web service with Apache Axis. Axis provides a
deployment tool, AdminClient, to do this. The deployment descriptor specifies the service being deployed, the
operations being exposed, and the mapping to the back-end implementation class. Here is a section of the
deploy.wsdd that was generated for the Weather service from the WSDL2Java run:

<service name="weather" provider="java:RPC" style="rpc" use="encoded">
 <parameter name="wsdlTargetNamespace" value="urn:weather"/>
 <parameter name="wsdlServiceElement" value="WeatherService"/>
 <parameter name="wsdlServicePort" value="weather"/>
 <parameter name="className" value="weather.ws.WeatherSoapBindingImpl"/>
 <parameter name="wsdlPortType" value="Weather"/>
 <operation name="getWeather" qname="operNS:getWeather"
 xmlns:operNS="urn:weather" returnQName="getWeatherReturn"
 returnType="rtns:Forecast" xmlns:rtns="http://weather" >
 <parameter name="in0" type="tns:string"
 xmlns:tns="http://www.w3.org/2001/XMLSchema"/>
 </operation>
</service>

The following command was then executed to register this deployment descriptor with Axis:

java org.apache.axis.client.AdminClient weather/ws/deploy.wsdd

After running AdminClient with the deploy.wsdd file, we successfully deployed the weather service to Axis. We then
verified that the service was deployed by viewing the list of services in the browser:

http://weather
http://www.w3.org/2001/XMLSchema"/

©2003 HEWLETT-PACKARD COMPANY
14

Figure 5. Viewing the weather service

Some of the key learnings from the web services development process included:

1. Existing application code is not necessarily 100% compatible with the available web services tools. In our
case, we were required to modify the Forecast class to model a JavaBean so that Apache Axis could
serialize it.

2. While the available Apache Axis tools were not embedded in a robust development environment, the
command-line tools were sufficient.

3. The hardest part of this step of the process was determining what components of the server-side
implementation had to be modified. Manual coding was still required to connect the server-side
implementation code to our existing Java application.

building the application with Ant

In the previous section, we walked through the various steps required to create, compile, package, and deploy the
web service. The approach taken was command-line driven, where each step was entered by hand. This can be
very time consuming, especially if the development team is continually rebuilding their web services for testing
purposes. This is where an automated build process can greatly enhance developer productivity. When designing
your build process, it’s important to introduce the build process as early in the life cycle as possible. This enables the
service to be available to the whole developer community, including developers, testers, and system integrators. This
concept of “continual deployment”, where services are built early and often, follows the XP methodology.

configuring the build environment

One of the more popular open source build tools on the market today is Apache Ant. You can think of Ant as a
next-generation Make utility, with Ant based on Java and XML. Use of Java makes Ant more portable across
operating systems and platforms. Furthermore, because Ant scripts are written using XML, it is much more
component-based, enabling you to add new types of build targets in the build environment [HAT].

Apache Ant can be used to assist in the generation of a number of application components, including Java, J2EE,
and web services components. In this section, we demonstrate how Apache Ant was used to simplify the build
process for the Weather service.

The first step was to download the Apache Ant tool from http://ant.apache.org. However, since we were using
Eclipse, we decided to take advantage of the built-in integration between Eclipse and Ant. The integration allows
you to take an Ant build file and run selected build targets. In addition to the built-in integration, we used Planty
(http://www.gebit.de), an Eclipse plug-in for Ant. Planty provides a more robust editing environment for creating
Ant build files, with features such as code completion on the Ant build files:

http://ant.apache.org
http://www.gebit.de

©2003 HEWLETT-PACKARD COMPANY
15

Figure 6. Using Planty to create Ant build files

creating the build script

In this paper, we will focus on how Ant was used to create the Java server-side bindings from the WSDL and how
that code was packaged and deployed to Apache Axis. The following listing shows how the WSDL2Java step can
be executed in Ant:

<target name="wsdl2java" depends="java2wsdl" description="Create Java Bindings">
 <axis-wsdl2java
 output=”${proj.dir}”
 serverside=”true”
 url=”${proj.dir}/Weather.wsdl”>
 </axis-wsdl2java>
</target>

Ant operates under a set of targets, where each target represents a specific step in the build process. Each target
describes the action to perform and any dependencies on other targets. Notice here that the wsdl2java target has a
dependency on the java2wsdl target, which builds the WSDL from the original source code. The wsdl2java target
specifies that the axis-wsdl2java task should be executed. Axis already comes with a set of prebuilt tasks to simplify
integration within Ant. In the example above, we specify the output directory and the input WSDL file, and the axis-
wsdl2java task will then generate the appropriate server-side bindings.

The next step was to compile the service code using the <javac> tag in Ant. In the listing below, we specify this tag,
followed by the source, destination directory, and the CLASSPATH reference.

<target name="compilews" depends="wsdl2java" description="Compile Web Services">
 <javac srcdir="${ws.dir}"
 destdir=”${build.classes.dir}”
 classpathref="axis.classpath">
 </javac>
</target>

Once compiled, we packaged and deployed the service. This involved creating the JAR file, copying the file to the
Axis directory, and registering the service. In the listing below, we used the <jar> tag to create the Java archive.
We specified the name of the JAR file to create, and the list of files to package. Then, we used the <copy> tag to
copy the library to the Apache Axis WEB-INF/lib directory. Finally, the axis-admin task was used to register the
deployment descriptor with Axis.

<target name="deploy" depends="compilews" description="Deploy WS">
 <jar destfile="${proj.dir}/Weather.jar">
 <fileset dir="${proj.dir}/weather">
 <include name="**/*.class"/>
 </fileset>

©2003 HEWLETT-PACKARD COMPANY
16

 </jar>
 <copy file="${proj.dir}/Weather.jar" todir="${axis.web-inf}"/>
 <axis-admin xmlfile=”${proj.dir}/weather/ws/deploy.wsdd”/>
</target>

running the Ant build script

After developing the build.xml file within Eclipse, we executed the specific build targets. To run a target, we simply
right-clicked on the build.xml file, and selected the Run Ant… menu option. When the dialog window displayed, we
then selected the specific targets that we wanted to run. The plug-in also validates the Ant build file, and displays
error messages if it found any problems in compiling the Ant file.

Figure 7. Running specific Ant targets

After checking the appropriate targets, and clicking Run, the output of the build process was displayed within the
console:

Figure 8. Results on running Ant

That completed the steps required to incorporate Apache Ant into the build process. Looking back on our
development experience, there were some key learnings from the process:

1. Eclipse does not automatically save files before executing an action. For example, we quickly learned that
after modifying the build.xml file, we had to remember to save the file before running Ant.

2. Ant performs some “magic” in the build. When specifying a javac target, Ant automatically builds not only
the source files in the current directory, but all source files under that directory as well.

3. If you run into problems executing an Ant build script, the “-v” option can greatly help in debugging the
build script. Within Eclipse, this option can be added on the Main dialog panel when you run Axis.

4. On our first attempt at writing the build file, we discovered that the server side bindings would always get
rebuilt even if the WSDL hadn’t been updated. We resolved this problem by using the <uptodate> task

©2003 HEWLETT-PACKARD COMPANY
17

to compare timestamps between the bindings and the WSDL file. The bindings would only get generated if
the WSDL had a newer timestamp.

Overall, use of Ant, combined with the integration into the Eclipse environment, provided us with an efficient
mechanism to quickly build the various web services components. In the end, this can save valuable time and effort
in the web services development process.

testing the web service

When testing web services, it is important to have well-designed tests, especially if the service will be distributed
across organizational boundaries. The challenge with web services testing is that there is no user interface to test.
Unlike web-based applications that contain a presentation layer, web services typically expose an XML
request/response interface. Without a user interface, it is important to consider an automated testing tool that can
simplify the testing process. This section reviews approaches for invoking, monitoring, and testing the Weather web
service we developed.

invoking the service

After creating and deploying the web service, the next step was to contact the web service via a client proxy. A
client proxy is a piece of code that communicates directly with the web service, encapsulating the SOAP processing
logic and shielding the developer from having to write the low-level code directly. Apache Axis provides the
WSDL2Java utility for creating the client proxy code. A helper class, WeatherServiceLocator, is automatically
generated to aid in invoking the web service. The following is the client code that had to be written to invoke the
service using this proxy class:

WeatherService service = new WeatherServiceLocator();
Weather weather = service.getweather();
Forecast forecast = weather.getWeather(args[0]);
System.out.println(“Forecast for “ + forecast.getCity() + “,” + forecast.getState();
System.out.println(“ “ + forecast.getForecast());
…

We inserted code to bind to the getweather method in the WeatherServiceLocator class. Finally, we communicated
with the web service through the public method, getWeather, and got back a Forecast object with the appropriate
information. After compiling and running the client, we received the following results:

Forecast for Loveland, CO
Partly Cloudy
High of 72, low of 36
%Precipitation: 0

This validated that the web service was running and we were able to communicate with it successfully.

monitoring the service

To help monitor web services, Axis provides the tcpmon utility class. tcpmon listens for connections on a given port
on the localhost, and forwards incoming messages to another port on another server. By inserting itself between the
two ports, tcpmon can show you all incoming and outgoing SOAP messages.

Since tcpmon operates under a different port, we had to make a small change to the generated
WeatherServiceLocator.java class to use a different port number. While the Locator class hardcodes this URL, it is a
much better programming practice to move this definition to a property file. This allows the developer to quickly
change the location of the server without having to modify the code. The following listing shows how this can be

©2003 HEWLETT-PACKARD COMPANY
18

done:

public class WeatherServiceLocator extends org.apache.axis.client.Service implements
weather.ws.WeatherService {
…
Properties props = new Properties();
Class c = getClass();
props.load(c.getResourceAsStream(“WeatherService.prop”));
String weather_address = “http://” props.getProperty("soap_host") + “:” +
 props.getProperty("soap_port") + “/axis/services/weather";
…
}

To use the tcpmon tool, you should select a local port which tcpmon monitors for incoming connections, a target
host where it will forward such connections, and the port number to which the target machine should be "tunneled":

$ java -cp axis.jar org.apache.axis.utils.tcpmon 8081 localhost 8080 &

Port 8081 is the port that we wanted to use to send our SOAP messages. The actual web service is running on
localhost port 8080. We ran the client again, and tcpmon updated to show the request and response messages
sent:

Figure 9. Monitoring SOAP traffic with TCPMON

testing the service

There are a number of tools available for testing web services. Some of the open source offerings include JUnit,
Grinder, Anteater, and PushToTest TestMaker. One of the tools we evaluated was Anteater, which provides an Ant-
based approach to writing tests for validating web services functionality [PRE]. Test scripts are written using a
declarative syntax, in which actions to be taken and their expected results are described. You can check the output
in various ways, including string equality, regular expressions or XPath expression testing. Since it is based on Ant,
Anteater is extensible in that you can define new tasks that fit your needs very easily.

In addition to emulating an HTTP or SOAP client, Anteater can also be used to emulate server components to test a
SOAP client application or to test asynchronous web services. Anteater embeds Tomcat, which is used to receive
incoming HTTP requests. You can apply validation on both the response received and on an incoming request. With
this functionality, Anteater can be used to test asynchronous web services, including ebXML and BizTalk messages.
Anteater can also be used to quickly test web applications by deploying them on its internal servlet container.

While Anteater was evaluated, we selected PushToTest TestMaker (http://www.pushtotest.com/) for our web
services testing tool. TestMaker is an open source tool that allows you to test the functionality, scalability and

http://www.pushtotest.com/

©2003 HEWLETT-PACKARD COMPANY
19

performance of a web service. Through a graphical environment and scripting language, you can test the
functionality of a web service. For example, you can determine that the right SOAP message is being sent to the
web service. TestMaker scripts are written using Jython (http://www.jython.org/), an open source implementation
of the Python language integrated with the Java platform. Jython supports variables, regular expressions, flow
controls and multiple-file test agent script capabilities. TestMaker also comes with the Test Object Oriented Library
(TOOL), a library developed by PushToTest to simplify the creation of web services tests. TOOL provides protocol
handlers, datasource handlers and utility objects to handle the communication with a web service using HTTP,
HTTPS, SOAP or XML-RPC.

After downloading, installing, and configuring TestMaker, we developed a test script to communicate with our web
service. This simple test script contacted our web service 100 times, returning a response from the service and the
average response time achieved. TestMaker has a wizard for generating a generic web services test script. We
simply supplied the URL to the web service WSDL file and the test script was created. The following is a screenshot
of the TestMaker GUI showing the test script for our Weather web service.

Figure 10. Creating test scripts in TestMaker

The first part of our script, shown below, configured both the SOAP protocol and the SOAP message to send to the
web service. The protocol contained the location of the service, consisting of the host, service path, and port
number. The SOAP body specified the service, method name, and the parameters to pass. In this case, the zip code
was passed as an argument to the getWeather service.

define the location of the web service
protocol.setHost("localhost")
protocol.setPath("axis/servlet/AxisServlet")
protocol.setPort(8081)

Send a request to the getWeather method in the weather web service
body.setTarget("weather")
body.setMethod("getWeather")
body.addParameter("zip", String, "80538", None)

In our first run of the test script that was generated by TestMaker, we received the following exception indicating the
tool did not know how to read the SOAP response:

com.pushtotest.tool.ToolException: Error making SOAP RPC call:
 No Deserializer found to deserialize a 'urn:ForeCast'
 using encoding style 'http://schemas.xmlsoap.org/soap/encoding/'.

http://www.jython.org/
http://schemas.xmlsoap.org/soap/encoding/&apos

©2003 HEWLETT-PACKARD COMPANY
20

After further investigation, we realized we had to add additional logic to serialize the response that was received.
Serialization provides a means to map a component from one type to another. In our case, we had to map from the
XML schema type to a JavaBean representing the Forecast class. The following code was added to handle this:

Create a Bean Serializer
beanSer = BeanSerializer()
qName = QName("http://weather", "Forecast")
protocol.setMapTypes(Constants.NS_URI_SOAP_ENC, qName, Forecast, beanSer, beanSer)

In the above code listing, the setMapTypes method is used to specify the mapping rule. The QName variable
indicates what XML schema type to use. In this case, we are looking for the Forecast type defined within the
“http://weather” namespace. The setMapTypes method then specifies that this XML type should be mapped to our
Forecast class, and further specifies that a basic BeanSerializer should be used for the serialization. This can be
done because the Forecast class was implemented as a JavaBean.

Finally, we had to add the necessary code to contact the web service. We wanted to send the SOAP request 100
times using a for loop. The following shows the code used to determine the average response time after invoking the
service 100 times:

totaltime = 0.0
for I in range(100):
 response = protocol.connect()
 totaltime += response.getTotalTime()
print “Avg. Response Time=”, totaltime/100, “ ms to complete.”

Before running the agent, we had to add the Weather.jar to the testmaker_home/testmaker/lib directory and
restart TestMaker. Successful calls to the weather web service appeared in the Output window:

Figure 11. The results of the test run

That’s all we had to do to test our service using TestMaker. Some of our key learnings from testing the web service
included:

1. The client proxy classes that are generated can greatly simplify the amount of code that has to be written
by a developer to communicate with an existing web service.

2. We found tcpmon to be a very effective utility when trying to debug a web service. With the monitor, you
can see what SOAP message is being constructed. Especially in cases where you get an exception or
SOAP fault, you can determine whether the client properly constructed the SOAP message.

3. The use of complex data types can add a level of complexity to the development. We had to get

http://weather
http://weather%E2%80%9D

©2003 HEWLETT-PACKARD COMPANY
21

TestMaker to understand the complex data type that was returned from service and map it to a JavaBean
representation.

conclusion

This development experience illustrated the complete web services lifecycle, and presented some open source tools
for doing the development. There were a few technical hurdles that had to be overcome to work in this new
development paradigm. Nevertheless, we found these tools worked well together and were a boost to our web
services development productivity. In fact, we were quite surprised by some of the integration we found between
Eclipse, Tomcat, Apache Axis, and Ant. We also found the process to locate, obtain, install, and use open source
development tools straightforward. Not only did these tools work “out of the box”, but the quality was sufficient for
our development purposes.

Development organizations need to quickly start using web services technology, but can’t always afford to make
significant early investments in tools that ultimately prove critical. However, the open source model helps these
groups by allowing them access to a low-cost solution for web services development. We were able to demonstrate
a complete development process for web services leveraging only open source tools. This should go a long way to
helping customers build, deploy, and test production-quality web services in their environment.

About the Authors. Chris and Claire are senior software consultants in HP's Developer Resources Organization
(http://devresource.hp.com). They provide software consulting to customers on J2EE and web services best
practices. They can be contacted at chris.peltz@hp.com and claire.rogers@hp.com, respectively.

references

[ALU] Alur, Deepak, J. Crupi, D. Marks. Core J2EE Patterns: Best Practices and Design Strategies. Sun
Microsystems Press, 2001.

[AMM] Ammai. JVM Server Performance Comparison. Ammai.com
(http://www.ammai.com/modules.php?op=modload&name=Reviews
&file=index &req =showcontent&id=10), Mar 2003.

[BEA] BEA Systems. BEA WebLogic JRockit–The Server JVM: Increasing Server-side Performance and
Manageability. BEA Dev2Dev, Aug 2002.

[GUI] Guitard, Jeff. Jakarta Tomcat Performance Benchmark. TheServerSide
(http://www.theserverside.com/reviews/thread.jsp?thread_id=18243&article_count=32), Mar 2003.

[HAT] Hatcher, Erik, S. Loughran. Java Development With Ant. Manning Publications Company
(http://manning.com/antbook), Aug 2002.

[APA] Apache Software Foundation. Axis User’s Guide.
http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-axis/java/docs/user-guide.html.

[MCC] McCarty, Bill. Learning Debian Gnu/Linux. O’Reilly & Associates, Oct 1999.
[MYS] MySQL AB. MySQL Benchmarks. MySQL.com

(http://www.mysql.com/information/benchmarks.html).
[OBJ] Object Technology International, Inc. Eclipse Platform Technical Overview. Eclipse.org

(http://www.eclipse.org/whitepapers/eclipse-overview.pdf), Feb 2003.
[PAV] Pavlicek, Russell. A Database Query. InfoWorld

(http://www.infoworld.com/article/03/03/07/10osource_1.html?s=tc), Mar 2003.
[PRE] Predescu, Ovidiu, J. Turner. Anteater User Manual. SourceForge http://aft.sourceforge.net/), Nov

2002.

http://devresource.hp.com
http://www.ammai.com/modules.php?op=modload&name=Reviews
http://www.theserverside.com/reviews/thread.jsp?thread_id=18243&article_count=32
http://manning.com/antbook
http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-axis/java/docs/user-guide.html
http://www.mysql.com/information/benchmarks.html
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
http://www.infoworld.com/article/03/03/07/10osource_1.html?s=tc
http://aft.sourceforge.net/

©2003 HEWLETT-PACKARD COMPANY
22

[VOL] Volano LLC. The Volano Report. Volano.com (www.volano.com/report) , Dec 2001.

