
P.O. Box 307218
Columbus, Ohio 43230

+1 (866) 521-1776
http://www.corder.com

C o r d e r E n t e r p r i s e s I n t e r n a t i o n a l

Building World Class MIS Teams, for you!

CL020 - Advanced Linux and UNIX Programming

Course Description:

In-depth training for software developers on Linux and UNIX system programming facilities.
Learn how to develop sophisticated multiprocess applications using system calls and library
routines.

Audience:

Application developers who will be writing advanced programs on Linux and UNIX.

Prerequisites:

Fundamentals of UNIX or Fundamentals of Linux, C Programming, and Advanced C
Programming. Strong C programming skills are required for this course.

Course Contents

UNIX Standards

• Brief History of UNIX

• AT&T and Berkeley UNIX Systems

• Major Vendors

• What is a Standard?

• What is POSIX?

• Other Industry Specs and Standards

Files and Directories

• The POSIX.1 Basic File Types

• File Descriptions

• Keeping Track of Open Files

• File Table Entries

• The v-node Structure

• The fcntl Function

• File Attributes

• The access Function

• Link, unlink, remove, and rename Functions

• Functions to Manipulate Directories

PAGE 2 OF 5

CL020 - Advanced Linux and UNIX Programming

System I/O

• Standard I/O vs System I/O

• System I/O Calls

• File and Record Locking

Processes

• What is a Process?

• Process Creation and Termination

• Process Memory Layout

• Dynamic Memory Allocation

• Accessing Environment Variables

• Real and Effective User IDs

Process Management

• Programs versus Processes

• The fork() System Function

• Parent and Child

• The exec System Function

• Current Image and New Image

• The wait() and waitpid() Function

• Interpreter Files and exec

Pipes - Basic IPC

• Interprocess Communication

• FIFOs

• More on FIFO’s

PAGE 3 OF 5

CL020 - Advanced Linux and UNIX Programming

Signals

• What is a Signal?

• Types of Signals

• Signal Action

• Blocking Signals from Delivery

• The sigaction() Function

• Signal Sets and Operations

• Sending a Signal to Another Process

• Blocking Signals with sigprocmask()

• Scheduling and Waiting for Signals

• Restarting System Calls (SVR4)

• Signals and Reentrancy

Overview of Client/Server Programming

• Designing Distributed Application

• Clients and Servers

• Ports and Services

• Server Types

• Stateless vs. Stateful Servers

• Concurrency Issues

The Berkeley Sockets API

• Berkeley Sockets

• Data Structures of the Sockets API

• Socket System Calls

• Generic Client/Server Models

• Sample Socket-based Client

Algorithms and Issues in Client Design

• Algorithms Instead of Details

• Client Architecture

• Sockets Utility Functions

PAGE 4 OF 5

CL020 - Advanced Linux and UNIX Programming

TCP Client Algorithm

• TCP Client Implementation

• UDP Client Algorithm

• UDP Client Implementation

Server Design

• Iterative Servers

• Concurrent Servers

• Performance Consideration

• An Iterative Server Design

• A Concurrent Server Design

System V Interprocess Communication

• System V IPC

• The Three System V IPC Facilities

• Common Operation - Get (IPCget)

• Common Operation - Control (IPCctl)

• Calls to Operate on the Facilities

• Commonalities between msg, sem, and shm

• IPC via Message Queues

• IPC via Shared Memory Segments

• Coordinating the Use of Shared Memory

• Semaphore Sets-semget() and semctl() Calls

• Semaphore Sets - the semop() calls

• Shared Memory Coordination Using Semaphores

• IPC Facility Handling ipcs and ipcrm

Date and Time Functions

• Time Representations

• Decoding Calendar Time

• Shorthand Functions - asctime(), ctime()

• Formatting Calendar Time Shared

• Process Times

• The Difference Between clock() and times()

• Berkeley High resolution Timers

PAGE 5 OF 5

CL020 - Advanced Linux and UNIX Programming

Standard I/O

• I/O Calls to manipulate streams

• I/O Calls which perform character I/O

• I/O Calls which perform string I/O

• I/O Calls which perform formatted I/O

• I/O Calls which perform binary I/O

