Simulations for Sharpening Wald-type Inference in Robust
Regression for Small Samples

Manuel Koller

February 4, 2026

Contents
1 Introduction 1
2 Setting 1
2.1 Methods e 1
2.2 Psi-Functions e 2
2.3 Designs e e 2
2.4 Error Distributions e 3
2.5 Covariance Matrix Estimators 4
3 Simulation 5
4 Simulation Results 7
4.1 Criteria e 7
4.2 Results. 8
5 Maximum Asymptotic Bias 20
6 Session Information 20
1 Introduction

In this vignette, we recreate the simulation study of Koller and Stahel (2011). This vignette is
supposed to complement the results presented in the above cited reference and render its results
reproducible. Another goal is to provide simulation functions, that, with small changes, could
also be used for other simulation studies.

Additionally, in Section 5, we calculate the maximum asymptotic bias curves of the -

functions used in the simulation.

2

Setting

The simulation setting used here is similar to the one in Maronna and Yohai (2010). We simulate
N = 1000 repetitions. To repeat the simulation, we recommend using a small value of N here,
since for large n and p, computing all the replicates will take days.

2.1 Methods

We compare the methods

e MM, SMD, SMDM as described in Koller and Stahel (2011). These methods are available
in the package robustbase (1lmrob).

e MM as implemented in the package robust (1mRob). This method will be denoted as
MMrobust later on.

e MM using S-scale correction by ¢r and ¢g as proposed by Maronna and Yohai (2010).

gt and g are defined as follows.

1
&= 1 (129 - 6.02/n)p/n’

R p a

=14

qr + o ie

where .) . .

1 N2 .1 : 1 N\ 7
dz*zw Til 7b:7 wl T’L 76:7 "¢ Tiz TL,
n im1 s n im1 gs n i1 s gs

with ¥ = p/,n the number of observations, p the number of predictor variables, g is the
S-scale estimate and 7; is the residual of the i-th observation.

When using gg it is necessary to adjust the tuning constants of y to account for the
dependence of k on p. For gt no change is required.

This method is implemented as lmrob.mar () in the source file estimating.functions.R.

2.2 y-Functions

We compare bisquare, optimal, lqg and Hampel 1-functions. They are illustrated in Fig. 1.
The tuning constants used in the simulation are compiled in Table 1. Note that the Hampel
y-function is tuned to have a downward slope of —1/3 instead of the originally proposed —1/2.
This was set to allow for a comparison to an even slower descending -function.

psi tuning.chi tuning.psi
optimal 0.405 1.06
bisquare 1.548 4.685

lqq 0.5, 1.5, NA, 0.5 —0.5, 1.5, 0.95, NA
hampel 0.318, 0.742, 1.695 1.352, 3.156, 7.213

Table 1: Tuning constants of ¢-functions used in the simulation.

2.3 Designs

Two types of designs are used in the simulation: fixed and random designs. One design with
n = 20 observations, p = 143 predictors and strong leverage points. This design also includes an
intercept column. It is shown in Fig. 21. The other designs are random, i.e., regenerated for every
repetition, and the models are fitted without an intercept. We use the same distribution to gen-
erate the designs as for the errors. The number of observations simulated are n = 25, 50, 100, 400
and the ratio to the number of parameters are p/n = 1/20,1/10,1/5,1/3,1/2. We round p to
the nearest smaller integer if necessary.
The random datasets are generated using the following code.

> f.gen <- function(n, p, rep, err) {
+ ## get function name and parameters
+ lerrfun <- f.errname(err$err)

2.0 1

1.54
Y —function
bisquare
=== hampel
== lgq
optimal

W(x)

0.54

0.0

0.0 25 5.0 75 10.0
X

Figure 1: v-functions used in the simulation.

lerrpar <- err$args
generate random predictors
ret <- replicate(rep, matrix(do.call(lerrfun, c(n = n*p, lerrpar)),
n, p), simplify=FALSE)
attr(ret[[1]], 'gen') <- f.gen
ret
}
ratios <- c¢(1/20, 1/10, 1/5, 1/3, 1/2)## p/n
lsit <- expand.grid(n = c(25, 50, 100, 400), p = ratios)
lsit <- within(lsit, p <- as.integer(n*p))
.errs.normal.1 <- list(err = 'normal',
args = list(mean = 0, sd = 1))
for (i in 1:NROW(lsit))
assign(paste('rand',1sit[i,1],1sit[i,2],sep="_"),
f.gen(1sit[i,1], 1sit[i,2], rep = 1, err = .errs.normal.1)[[1]])

+ +V+VVVV 4+ A+ o+ o+ o+ o+ o+

An example design is shown in Fig. 2.

2.4 FError Distributions

We simulate the following error distributions
e standard normal distribution,
L4 t5a t37 tlv

e centered skewed t with df = 00,5 and v = 2 (denoted by cskt(co, 2) and cskt(5,2), respec-
tively); as introduced by Fernandez and Steel (1998) using the R package skewt,

rand_25 5: n=25, p=5

X1 | X2 ‘| X3 ‘| X4 ‘| X5
0.4
0.3 Corr: Corr: Corr: Corr: <
a1 ~0.520** 0.219 0.190 ~0.083 |
0.0 L
24, ey T
117 ® &Q o Corr: Corr: Corr:
04 e 3
-1 o Weo o -0.062 -0.311 0.171
-24 [) Py L]
.. 9 ® [] °]
1 ® e o« o ° & Corr: Corr:
10 [YK) o 0O ! ’ x
01 o '%." °l° e& e’ -0.026 -0.134 @
-19 e 2 ° o L
i: k o el fo ; * * e . Corr:]
L o o2 o 2% ° - x
0-
—l-. .‘. ° ° O. 3”'. L] .o‘:¢ o o -0.169 -
24 o ® . - . - L
l- [J LJl [J [J
04. ¢ B o0 'o. . ?' .‘0 ...OO ° ° o | ® t. .".
-14® o @ |° elalon, o ‘“ ° &% o, be
-24 e ©) L] e o| |® °
_3- T T I. T T T . T T T T . T T T T T .I T T T T T T
2 -1 0 1 -2-101 2 -1 0 1 2 -10 1 2 -3 -2 -1 0 1

Figure 2: Example random design.

e contaminated normal, N/ (0, 1) contaminated with 10% N (0, 10) (symmetric, cnorm(0.1,0,3.16))
or N (4,1) (asymmetric, cnorm(0.1,4,1)).

2.5 Covariance Matrix Estimators

For the standard MM estimator, we compare Avar; of Croux et al. (2003) and the empirical
weighted covariance matrix estimate corrected by Huber’s small sample correction as described
in Huber and Ronchetti (2009) (denoted by Wssc). The latter is also used for the variation of
the MM estimate proposed by Maronna and Yohai (2010). For the SMD and SMDM variants
we use the covariance matrix estimate as described in Koller and Stahel (2011) (Wr).

The covariance matrix estimate consists of three parts:

cov(B) = PV

The SMD and SMDM methods of 1lmrob use the following defaults.

2
1 n 2 T
721 T (#;)
1 n 5
n Zi:l (G4 (T%)

where 7; is the rescaling factor used for the D-scale estimate (see Koller and Stahel (2011)).
Remark: Equation (1) is a corrected version of . It was changed in robustbase version 0.91
(April 2014) to ensure that the equation reduces to 1 in the classical case (¢(z) = z). If the
former (incorrect) version is needed for compatibility reasons, it can be obtained by adding the
argument cov.corrfact = "tauold".

§= (1)

~ 1

Vyx=-———X"WX
L Wi

where W = diag (w (%) ,...,w(%2)). The function w(r) = 1(r)/r produces the robustness
weights.

3 Simulation

The main loop of the simulation is fairly simple. (This code is only run if there are no aggregate
results available.)

> aggrResultsFile <- file.path(robustDta, "aggr_results.Rdata")

> if (!file.exists(aggrResultsFile)) {
+ ## load packages required only for simulation
+ stopifnot(require(robust),
+ require (skewt),
+ require (foreach))
+ if (!is.null(getOption("cores"))) {
+ if (getOption("cores") == 1)
+ registerDoSEQ() ## no not use parallel processing
+ else {

+ stopifnot (require(doParallel))
+ if (.Platform$0S.type == "windows") {
+ cl <- makeCluster(getOption("cores"))
+ clusterExport(cl, c("N", "robustDoc"))
+ clusterEvalQ(cl, slave <- TRUE)
+ clusterEvalQ(cl, source(file.path(robustDoc, 'simulation.init.R')))
+ registerDoParallel(cl)
+ } else registerDoParallel()
+ }

+ } else registerDoSEQ() ## no not use parallel processing
+ for (design in c("dd", ls(pattern = 'rand_\\d+_\\d+'))) {
+ print(design)

+ ## set design

+ estlist$design <- get(design)

+ estlist$use.intercept <- !grepl('"rand', design)

+ ## add design.predict: pc

+ estlist$design.predict <-

+ if (is.null(attr(estlist$design, 'gen')))

+ f.prediction.points(estlist$design) else

+ f.prediction.points(estlist$design, max.pc = 2)

+

+

+

+

+

+

+

+

+

+

+

+

+

filename <- file.path(robustDta,
sprintf('r.test.final./s.Rdata',design))
if (!file.exists(filename)) {

run

print (system.time(r.test <- f.sim(estlist, silent = TRUE)))

save

save(r.test, file=filename)

delete output

rm(r.test)

run garbage collection

gc()

+ }
+ }

The variable estlist is a list containing all the necessary settings required to run the
simulation as outlined above. Most of its elements are self-explanatory.

> str(estlist, 1)

List of 8

$ design :'data.frame': 20 obs. of 3 variables:
$ nrep : num 1000

$ errs :List of 8

$ seed : num 13082010

$ procedures :List of 21

$ design.predict:'data.frame': 10 obs. of 3 variables:

..— attr(x, "npcs")= int 3
$ output :List of 6
$ use.intercept : logi TRUE

errs is a list containing all the error distributions to be simulated. The entry for the standard
normal looks as follows.

> estlist$errs[[1]]

$err
[1] "normal"

$args
$args$mean
[11 0

$args$sd
(1] 1

err is translated internally to the corresponding random generation or quantile function, e.g.,
in this case rnorm or gqnorm. args is a list containing all the required arguments to call the
function. The errors are then generated internally with the following call.

> set.seed(estlist$seed)
> errs <- c(sapply(1:nrep, function(x) do.call(fun, c(n = nobs, args))))

All required random numbers are generated at once instead of during the simulation. Like this,
it is certain, that all the compared methods run on exactly the same data.

The entry procedures follows a similar convention. design.predict contains the de-
sign used for the prediction of observations and calculation of confidence or prediction inter-
vals. The objects returned by the procedures are processed by the functions contained in the
estlist$output list.

> str(estlist$output[1:3], 2)

List of 3
$ sigma:List of 2
..$ names: chr "sigma"
..$ fun : language sigma(lrr)
$ beta :List of 2

..$ names: language paste("beta", l:npar, sep = "_")
..$ fun : language coef(lrr)
$ se :List of 2
..$ names: language paste("se", l:npar, sep = "_")
..$ fun : language sqrt(diag(covariance.matrix(lrr)))

The results are stored in a 4-dimensional array. The dimensions are: repetition number, type
of value, procedure id, error id. Using apply it is very easy and fast to generate summary
statistics. The raw results are stored on the hard disk, because typically it takes much longer to
execute all the procedures than to calculate the summary statistics. The variables saved take
up a lot of space quite quickly, so only the necessary data is stored. These are o, 3 as well as
the corresponding standard errors.

To speed up the simulation routine f.sim, the simulations are carried out in parallel, as long
as this is possible. This is accomplished with the help of the R-package foreach. This is most
easily done on a machine with multiple processors or cores. The multicore package provides
the methods to do so easily. The worker processes are just forked from the main R process.

After all the methods have been simulated, the simulation output is processed. The code is
quite lengthy and thus not displayed here (check the Sweave source file Imrob_simulation.Rnw).
The residuals, robustness weights, leverages and 7 values have to be recalculated. Using vec-
torized operations and some specialized C code, this is quite cheap. The summary statistics
generated are discussed in the next section.

4 Simulation Results

4.1 Criteria

The simulated methods are compared using the following criteria.

Scale estimates. The criteria for scale estimates are all calculated on the log-scale. The
bias of the estimators is measured by the 10% trimmed mean. To recover a meaningful scale, the
results are exponentiated before plotting. It is easy to see that this is equivalent to calculating
geometric means. Since the methods are all tuned at the central model, N'(0, 1), a meaningful
comparison of biases can only be made for N'(0,1) distributed errors.

The variability of the estimators, on the other hand, can be compared over all simulated
error distributions. It is measured by the 10% trimmed standard deviation, rescaled by the
square root of the number of observations.

For completeness, the statistics used to compare scale estimates in Maronna and Yohai (2010)
are also calculated. They are defined as

q = median <SA(6)> , M =mad <SA(6)) ; (2)

gs gs

where S(e) stands for the S-scale estimate evaluated for the actual errors e. For the D-scale

estimate, the definition is analogue. Since there is no design to correct for, we set 7, = 1 Vi.
Coefficients. The efficiency of estimated regression coefficients 5’ is characterized by their

mean squared error (MSE). Since we simulate under Hy : 8 = 0, this is determined by the

covariance matrix of 8. We use E [H ,@H%] = Z?:l Var(Bj) as a summary. When comparing to

the MSE of the ordinary least squares estimate (OLS), this gives the efficiency, which, by the
choice of tuning constants of 1, should yield

MSE(BoLs)

~

MSE(B)

~
~

for standard normally distributed errors. The simulation mean of Z?Zl V&I‘(,@j) is calculated
with 10% trimming. For other error distributions, this ratio should be larger than 1, since by

using robust procedures we expect to gain efficiency at other error distributions (relative to the
least squares estimate).

~. We compare the behavior of the various estimators of v by calculating the trimmed mean
and the trimmed standard deviation for standard normal distributed errors.

Covariance matrix estimate. The covariance matrix estimates are compared indirectly
over the performance of the resulting test statistics. We compare the empirical level of the
hypothesis tests Hy : 3; = 0 for some j € {1,...,p}. The power of the tests is compared by
testing for Hy : 8; = b for several values of b > 0. The formal power of a more liberal test is
generally higher. Therefore, in order for this comparison to be meaningful, the critical value for
each test statistic was corrected such that all tests have the same simulated level of 5%.

The simple hypothesis tests give only limited insights. To investigate the effects of other
error distributions, e.g., asymmetric error distributions, we compare the confidence intervals for
the prediction of some fixed points. Since it was not clear how to assess the quality prediction
intervals, either at the central or the simulated model, we do not calculate them here.

A small number of prediction points is already enough, if they are chosen properly. We chose
to use seven points lying on the first two principal components, spaced evenly from the center of
the design used to the extended range of the design. The principal components were calculated
robustly (using covMcd of the robustbase package) and the range was extended by a fraction
of 0.5. An example is shown in Figure 21.

4.2 Results

The results are given here as plots (Fig. 3 to Fig. 22). For a complete discussion of the results,
we refer to Koller and Stahel (2011).

The different -functions are each plotted in a different facet, except for Fig. 8, Fig. 9 and
Fig. 15, where the facets show the results for various error distributions. The plots are augmented
with auxiliary lines to ease the comparison of the methods. The lines connect the median values
over the values of n for each simulated ratio p/n. In many plots the y-axis has been truncated.
Points in the grey shaded area represent truncated values using a different scale.

optimal bisquare
Scale Est.
N
— B
N

- 8p

o aro
— Q10s

< 0.7 A

© ~ (Qe0s

Q) N

S " Orobust

© lqg Hampel

g

= n

8

> e 25
A 50
= 100
+ 400

0.7 4
T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
ratio

Figure 3: Mean of scale estimates for normal errors. The mean is calculated with 10% trimming.
The lines connect the median values for each simulated ratio p/n. Results for random designs
only.

optimal bisquare
n
e 25
A 50
= 100
+ 400
l
=
<b
o A
N—’ ~— 0Op
@ 251 A
~~ OoLs
N
2.0- —_— O'S
N
— 0els
N
= 0O10s
N
~ Orobust

T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
ratio

Figure 4: Variability of the scale estimates for normal errors. The standard deviation is calcu-
lated with 10% trimming.

sd(log(6))vn

optimal

bisquare

Scale Est.

N
Orobust

laq

Hampel

Error

2.54

N(0,1)
ts
t3
ty
cskt(eo, 2)
¥ cskt(5,2)
cnorm(0.1,0,3.16)

: cnorm(0.1,4,1)

Figure 5: Variability of the scale estimates for all simulated error distributions.

optimal bisquare
1.44
1.2 n
e 25
4 50
1.0 z = 100
+ 400
laq Hampel
1.44
Scale Est.
N
- &
N
1.24 ~ 0QeOs
/
1.0
T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
ratio

Figure 6: ¢ statistic for normal errors. ¢ is defined in (2).

10

M/q

0.40 1

0.204
0.14 4
0.104
0.074
0.05+

0.034
0.02 4

0.01 1

0.40 1

0.204
0.14 4
0.104
0.07 1
0.05+

0.034
0.02 4

0.01 1

optimal

bisquare

g

Hampel

0.3

Figure 7: M/q statistic for normal errors. M and ¢ are defined in (2).

0.4

05 01

ratio

0.2 0.3 0.4 0.5

N(0,1)

t5

1.24

1.0

T >

0.94
0.8

T~

cskt(Inf,2)

cskt(5,2)

1.24

1.04
0.94

0.84

Saniii=

>

\

cnorm(0.1,0,3.16)

cnorm(0.1,4,1)

1.2

1.04
0.9+

'

e

>

0.84

S

01 02 03 04 05

02 03 04 05
ratio

0.1

T T T T T
01 02 03 04 05

Figure 8: ¢ statistic for bisquare 1.

11

n

e 25

A 50

= 100

+ 400

Scale Est.
N

—~ &

N
~~ (e0s
Scale Est.
n

e 25
A 50
= 100
+ 400

N(0,1) t5 t3

0.40
31
0.03-
0.02 1 Scale E
0.01 1 cale Est.
t1 cskt(Inf,2) cskt(5,2) -
a n
e 25
T T T T T A 50
cnorm(0.1,0,3.16) cnorm(0.1,4,1) o1 02 03 04 05 = 100
+ 400

T T T T T T T T T
01 02 03 04 05 01 02 03 04 05
ratio

Figure 9: M/q statistic for bisquare 1.

12

<

efficiency of B

optimal

bisquare

e 25
A 50
= 100
400

lqg

Hampel Estimator

1.0

0.8+

0.6

MM

SMD
SMDM
MM qr
MM qe
MMrobust

—_—

0.1 0.2

0.3

0.4

0.5 01 02 03 04 05
p/n

Figure 10: Efficiency for normal errors. The efficiency is calculated by comparing to an OLS
estimate and averaging with 10% trimming.

<

efficiency of B

optimal bisquare
® Error
PS i ? ' . N(0,1)
*Q) .% i ‘{ | ; :
E_ 8 ¥ 8 é | P & é e
o« 0 N § §t cski(e, 2)
{ > ¢ cski(5,2)

cnorm(0.1,0,3.16)

cnorm(0.1,4,1)

Estimator

MM

SMD
SMDM
MM ar
MM gg
MMrobust

Figure 11: Efficiency for all simulated error distributions except #;.

13

mean(y)

Figure 12:

sd(V)

optimal

bisquare

1.24

0.8

g

Hampel

1.2+

0.8

0.1

0.2

0.3

0.4

0.5
p/n

0.1

0.2

0.3

0.4

0.5

optimal

bisquare

0.20+
0.14+
0.10+
0.07+
0.05+

0.03+
0.02+

0.01+

lqq

0.20 1
0.14+
0.10+
0.07+
0.05+

0.03+
0.02+

0.01+

e o

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

Estimator

~e—= SMD
-e— SMDM

e 25
A 50
= 100
+ 400

Comparing the estimates of . The solid line connects the uncorrected estimate,
dotted the 7 corrected estimate and dashed Huber’s small sample correction.

Estimator

~e= SMD
-e— SMDM

e 25
A 50
= 100
+ 400

p/n

Figure 13: Comparing the estimates of 4. The solid line connects the uncorrected estimate,
dotted the 7 corrected estimate and dashed Huber’s small sample correction.

14

optimal bisquare
B ——
0.14
0.10+ Estimator
0.079 G / ~=— MMrobust.Wssc
' —=— MM. Avar
0.05 T 1
o ~~ MM.Wssc
Il
=y 0.034 —=— SMD.W 1t
T 0.021 ~ SMDM.W 1
— —— MM qr.Wssc
[
I log Hampel o MM ge.Wssc
©
©
5_ n
S
o e 25
A 50
= 100
0.03 1 + 400
0.02 A
T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
p/n

Figure 14: Empirical levels of test Hy : 81 = 0 for normal errors. The y-values are truncated at
0.02 and 0.14.

N(0,1) t5 t3
0.14 4 +
0.10 -
0.07 : 3
0.05 12y 7 : Estimator
0.037 —— MM. Avar;
o
I 1 cskt(Inf,2) cskt(5,2) ~ MM.Wssc
Q —_
o 0.14 4 SMD.W 1
T 0.10- = 2 ~~ SMDM.W T
D 0.07- . s
3 0.051 —
B ¥ n
0.03
= 1 e s
= 01 02 03 04 05
g cnorm(0.1,0,3.16) cnorm(0.1,4,1) 4 50
0.14 = 100
0.104 + 400
0.07 1 :
0.05 1=
0.03

T T T T T T T T T
01 02 03 04 05 01 02 03 04 05
p/n

Figure 15: Empirical levels of test Hy : 81 = 0 for lqq 1-function and different error distributions.

15

optimal bisquare

0.175

0.150

0.125
N Estimator (Cov. Est.)
S 0.100
I —— MM. Avar;
—
¢ 0.0751 —~— MM.Wssc
o
I —— MM gg.Wssc
g loq Hampel — MM gr.Wssc
S 0.175 —— MMrobust.Wssc
D —~ OLS
2 0.150 -
a —~— SMD.W 1
£ 0125+ ~ SMDM.W t

0.100

0.075

T T T T T T T T

01 02 03 04 05 01 02 03 04 05
p/n

Figure 16: Empirical power of test Hy : 81 = 0.2 for different -functions. Results for n = 25
and normal errors only.

optimal bisquare

0.54

0.4 1

0.3 1 .
< Estimator (Cov. Est.)
o
I 0.2 —— MM. Avar;
—
< —~— MM.Wssc
© 0.11
Ir - —— MM gg.Wssc
g laq Hampel — MM gr.Wssc
8_ 0.5 —= MMrobust.Wssc
< i . —~ OLS
g 047 ~ SMD.W T
5 034 ~~ SMDM.W

0.2+

0.1

T T T T T T T T

01 02 03 04 05 01 02 03 04 05
p/n

Figure 17: Empirical power of test Hy : 81 = 0.4 for different -functions. Results for n = 25
and normal errors only.

16

optimal bisquare

0.8 4

0.6 1 \
© .
S 044 Estimator (Cov. Est.)
I —— MM. Avar;
o
"o 0.2 : —— MM.Wssc
I —— MM gg.Wssc
g lqq Hampel —— MM gr.Wssc
8_ 0.84 4 —— MMrobust.Wssc
.S —— OLS
‘S 0.6 —— SMD.W T
g —— SMDM.W t

0.4+

0.2 4

T T T T T T T T

01 02 03 04 05 01 02 03 04 05
p/n

Figure 18: Empirical power of test Hy : 81 = 0.6 for different ¢-functions. Results for n = 25
and normal errors only.

optimal bisquare

0.8 1

0.6 1
@ Estimator (Cov. Est.)
o
1 0.4 - —— MM. Avar;
—
< —~— MM.Wssc
o
I 0.24 —— MM gg.Wssc
g laq Hampel — MM gr.Wssc
S —— MMrobust.Wssc
s ~~ SMD.WT
e ——
T 064 SMDM.W T

0.4 1

0.2- T T T T T T T T

01 02 03 04 05 01 02 03 04 05
p/n

Figure 19: Empirical power of test Hy : 81 = 0.8 for different -functions. Results for n = 25
and normal errors only.

17

optimal bisquare

1.0

0.8
o 067 Estimator (Cov. Est.)
(g._ —— MM. Avar

0.4
S —— MM.Wssc
T
_ —— MM (gg.Wssc
o
% laq Hampel —— MM gr.Wssc
E— 1.0 g—e- —= —— MMrobust.Wssc
.S \ —— OLS
E— 0.8 ~~ SMD.W T
o ~~ SMDM.W 1

0.6

0.4

T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
p/n

Figure 20: Empirical power of test Hy : 51 = 1 for different 1-functions. Results for n = 25 and

normal errors only.

X1 X2 ‘ | X3
0.3-
0.2 Corr: Corr: S
0.970%** 0.160 .
0.1-
0.01 L
104 .]
5 - []
.: o? Corr: <
0- . 80° 0.187 ”
L
5. o
. I
10.0 e L
7.5+ 2 R
5.0 &
[) []
257 . . .o
O'O- T .I’$ I.“..I T . ?.” .I‘ 6.I .I T T T T T
2 -1 0 2 -5 0 5 1000 25 50 75 100

Figure 21: Prediction points for fixed design. The black points are the points of the original
design. The red digits indicate the numbers and locations of the points where predictions are
taken.

18

NA optimal bisquare

0.14

0.10+

0.07+

0.05

0.03

0.14

0.10+

0.07+

empirical level of confidence intervals

0.05

0.03

Point

Estimator (Cov. Est.)
—— OLS

—— MMrobust.Wssc
—— MM. Avar;

—— MM.Wssc

—— SMD.W 1t

—— SMDM.W 1

—— MM (g7.Wssc

—— MM gg.Wssc

Error
N(0,1)
5
t3
t
cskt(co, 2)

¥ cskt(5,2)

cnorm(0.1,0,3.16)
cnorm(0.1,4,1)

Figure 22: Empirical coverage probabilities. Results for fixed design. The y-values are truncated

at 0.14.

19

5 Maximum Asymptotic Bias

The slower redescending -functions come with higher asymptotic bias as illustrated in Fig. 23.
We calculate the asymptotic bias as in Berrendero et al. (2007).

T
104)
1
I
9 1
I
% 8 1
c 1
8 I
Qo 71 !
%) ! .
oo W —function
o g4
g Hampel
i)
Q 51 — lgq
S .
> —— bisquare
g 41
optimal
c p
E *1
=
©
g 21
1-

0.0 0.1 0.2 0.3
amount of contamination €

Figure 23: Maximum asymptotic bias bound for the y-functions used in the simulation. Solid
line: lower bound. Dashed line: upper bound.

6 Session Information

> toLatex(sessionInfo())

R version 4.5.2 Patched (2026-01-31 r89375), x86_64-pc-linux-gnu

Locale: LC_CTYPE=de_CH.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=de_CH.UTF-8, LC_PAPER=de_CH.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=de_CH.UTF-8,
LC_IDENTIFICATION=C

Time zone: Europe/Zurich

TZcode source: system (glibc)

Running under: Fedora Linux 42 (Adams)

Matrix products: default

BLAS: /sfs/u/maechler/R/D/r-patched/F42-64-inst/1ib/1ibRblas.so
LAPACK: /usr/1ib64/liblapack.s0.3.12.0

Base packages: base, datasets, grDevices, graphics, grid, methods, stats, utils

20

e Other packages: GGally 2.4.0, ggplot2 4.0.2, reshape2 1.4.5, robustbase 0.99-7,
xtable 1.8-4

e Loaded via a namespace (and not attached): DEoptimR 1.1-4, R6 2.6.1,
RColorBrewer 1.1-3, Repp 1.1.1, S7 0.2.1, cli 3.6.5, compiler 4.5.2, dichromat 2.0-0.1,
dplyr 1.2.0, farver 2.1.2, generics 0.1.4, ggstats 0.12.0, glue 1.8.0, gtable 0.3.6,
labeling 0.4.3, lifecycle 1.0.5, magrittr 2.0.4, parallel 4.5.2, pillar 1.11.1, pkgconfig 2.0.3,
plyr 1.8.9, purrr 1.2.1, rlang 1.1.7, scales 1.4.0, stringi 1.8.7, stringr 1.6.0, tibble 3.3.1,
tidyr 1.3.2, tidyselect 1.2.1, tools 4.5.2, vectrs 0.7.1, withr 3.0.2

> unlist (packageDescription("robustbase") [c("Package", "Version", "Date")])

Package Version Date
"robustbase" "0.99-7" "2026-02-03"
References

Berrendero, J., B. Mendes, and D. Tyler (2007). On the maximum bias functions of MM-
estimates and constrained M-estimates of regression. Annals of statistics 35(1), 13.

Croux, C., G. Dhaene, and D. Hoorelbeke (2003). Robust standard errors for robust estimators.
Technical report, Dept. of Applied Economics, K.U. Leuven.

Fernandez, C. and M. Steel (1998). On bayesian modeling of fat tails and skewness. Journal of
the American Statistical Association 93(441), 359-371.

Huber, P. J. and E. M. Ronchetti (2009). Robust Statistics, Second Edition. NY: Wiley and
Sons Inc.

Koller, M. and W. A. Stahel (2011). Sharpening wald-type inference in robust regression for
small samples. Computational Statistics € Data Analysis 55(8), 2504-2515.

Maronna, R. A. and V. J. Yohai (2010). Correcting MM estimates for "fat” data sets. Compu-
tational Statistics €& Data Analysis 54 (12), 3168-3173.

21

	Introduction
	Setting
	Methods
	Psi-Functions
	Designs
	Error Distributions
	Covariance Matrix Estimators

	Simulation
	Simulation Results
	Criteria
	Results

	Maximum Asymptotic Bias
	Session Information

