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adjbox Plot an Adjusted Boxplot for Skew Distributions

Description

Produces boxplots adjusted for skewed distributions as proposed in Hubert and Vandervieren (2008).

Usage

adjbox(x, ...)

## S3 method for class 'formula'
adjbox(formula, data = NULL, ..., subset, na.action = NULL)

## Default S3 method:
adjbox(x, ..., range = 1.5, doReflect = FALSE,

width = NULL, varwidth = FALSE,
notch = FALSE, outline = TRUE, names, plot = TRUE,
border = par("fg"), col = NULL, log = "",
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pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5),
horizontal = FALSE, add = FALSE, at = NULL)

Arguments

formula a formula, such as y ~ grp, where y is a numeric vector of data values to be split
into groups according to the grouping variable grp (usually a factor).

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data contain NAs. The
default is to ignore missing values in either the response or the group.

x for specifying data from which the boxplots are to be produced. Either a numeric
vector, or a single list containing such vectors. Additional unnamed arguments
specify further data as separate vectors (each corresponding to a component
boxplot). NAs are allowed in the data.

... For the formula method, named arguments to be passed to the default method.
For the default method, unnamed arguments are additional data vectors (unless x
is a list when they are ignored), and named arguments are arguments and graph-
ical parameters to be passed to bxp in addition to the ones given by argument
pars (and override those in pars).

range this determines how far the plot whiskers extend out from the box, and is simply
passed as argument coef to adjboxStats(). If range is positive, the whiskers
extend to the most extreme data point which is no more than range times the
interquartile range from the box. A value of zero causes the whiskers to extend
to the data extremes.

doReflect logical indicating if the MC should also be computed on the reflected sample
-x, and be averaged, see mc.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the square-
roots of the number of observations in the groups.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches of
two plots do not overlap this is ‘strong evidence’ that the two medians differ
(Chambers et al., 1983, p. 62). See boxplot.stats for the calculations used.

outline if outline is not true, the outliers are not drawn (as points whereas S+ uses
lines).

names group labels which will be printed under each boxplot.

boxwex a scale factor to be applied to all boxes. When there are only a few groups, the
appearance of the plot can be improved by making the boxes narrower.

staplewex staple line width expansion, proportional to box width.

outwex outlier line width expansion, proportional to box width.

plot if TRUE (the default) then a boxplot is produced. If not, the summaries which the
boxplots are based on are returned.

border an optional vector of colors for the outlines of the boxplots. The values in
border are recycled if the length of border is less than the number of plots.
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col if col is non-null it is assumed to contain colors to be used to colour the bodies
of the box plots. By default they are in the background colour.

log character indicating if x or y or both coordinates should be plotted in log scale.

pars a list of (potentially many) more graphical parameters, e.g., boxwex or outpch;
these are passed to bxp (if plot is true); for details, see there.

horizontal logical indicating if the boxplots should be horizontal; default FALSE means
vertical boxes.

add logical, if true add boxplot to current plot.

at numeric vector giving the locations where the boxplots should be drawn, partic-
ularly when add = TRUE; defaults to 1:n where n is the number of boxes.

Details

The generic function adjbox currently has a default method (adjbox.default) and a formula in-
terface (adjbox.formula).

If multiple groups are supplied either as multiple arguments or via a formula, parallel boxplots will
be plotted, in the order of the arguments or the order of the levels of the factor (see factor).

Missing values are ignored when forming boxplots.

Extremes of the upper and whiskers of the adjusted boxplots are computed using the medcouple
(mc()), a robust measure of skewness. For details, cf. TODO

Value

A list with the following components:

stats a matrix, each column contains the extreme of the lower whisker, the lower
hinge, the median, the upper hinge and the extreme of the upper whisker for one
group/plot. If all the inputs have the same class attribute, so will this component.

n a vector with the number of observations in each group.

coef a matrix where each column contains the lower and upper extremes of the notch.

out the values of any data points which lie beyond the extremes of the whiskers.

group a vector of the same length as out whose elements indicate to which group the
outlier belongs.

names a vector of names for the groups.

Note

The code and documentation only slightly modifies the code of boxplot.default, boxplot.formula
and boxplot.stats

Author(s)

R Core Development Team, slightly adapted by Tobias Verbeke
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References

Hubert, M. and Vandervieren, E. (2008). An adjusted boxplot for skewed distributions, Computa-
tional Statistics and Data Analysis 52, 5186–5201. doi:10.1016/j.csda.2007.11.008

See Also

The medcouple, mc; boxplot.

Examples

if(require("boot")) {
### Hubert and Vandervieren (2008), Fig. 5.%(2006): p. 10, Fig. 4.
data(coal, package = "boot")
coaldiff <- diff(coal$date)
op <- par(mfrow = c(1,2))
boxplot(coaldiff, main = "Original Boxplot")
adjbox(coaldiff, main = "Adjusted Boxplot")
par(op)

}

### Hubert and Vandervieren (2008), p. 11, Fig. 7a -- enhanced
op <- par(mfrow = c(2,2), mar = c(1,3,3,1), oma = c(0,0,3,0))
with(condroz, {
boxplot(Ca, main = "Original Boxplot")
adjbox (Ca, main = "Adjusted Boxplot")
boxplot(Ca, main = "Original Boxplot [log]", log = "y")
adjbox (Ca, main = "Adjusted Boxplot [log]", log = "y")

})
mtext("'Ca' from data(condroz)",

outer=TRUE, font = par("font.main"), cex = 2)
par(op)

adjboxStats Statistics for Skewness-adjusted Boxplots

Description

Computes the “statistics” for producing boxplots adjusted for skewed distributions as proposed in
Hubert and Vandervieren (2008), see adjbox.

Usage

adjboxStats(x, coef = 1.5, a = -4, b = 3, do.conf = TRUE, do.out = TRUE,
...)

https://doi.org/10.1016/j.csda.2007.11.008
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Arguments

x a numeric vector for which adjusted boxplot statistics are computed.

coef number determining how far ‘whiskers’ extend out from the box, see boxplot.stats.

a, b scaling factors multiplied by the medcouple mc() to determine outlyer bound-
aries; see the references.

do.conf, do.out logicals; if FALSE, the conf or out component respectively will be empty in the
result.

... further optional arguments to be passed to mc(), such as doReflect.

Details

Given the quartilesQ1,Q3, the interquartile range ∆Q := Q3−Q1, and the medcoupleM :=mc(x),
c =coef, the “fence” is defined, for M ≥ 0 as

[Q1 − cea·M∆Q,Q3 + ceb·M∆Q],

and for M < 0 as
[Q1 − ce−b·M∆Q,Q3 + ce−a·M∆Q],

and all observations x outside the fence, the “potential outliers”, are returned in out.

Note that a typo in robustbase version up to 0.7-8, for the (rare left-skewed) case where mc(x) < 0,
lead to a “fence” not wide enough in the upper part, and hence less outliers there.

Value

A list with the components

stats a vector of length 5, containing the extreme of the lower whisker, the lower
hinge, the median, the upper hinge and the extreme of the upper whisker.

n the number of observations

conf the lower and upper extremes of the ‘notch’ (if(do.conf)). See boxplot.stats.

fence length 2 vector of interval boundaries which define the non-outliers, and hence
the whiskers of the plot.

out the values of any data points which lie beyond the fence, and hence beyond the
extremes of the whiskers.

Note

The code only slightly modifies the code of R’s boxplot.stats.

Author(s)

R Core Development Team (boxplot.stats); adapted by Tobias Verbeke and Martin Maechler.

See Also

adjbox(), also for references, the function which mainly uses this one; further boxplot.stats.
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Examples

data(condroz)
adjboxStats(ccA <- condroz[,"Ca"])
adjboxStats(ccA, doReflect = TRUE)# small difference in fence

## Test reflection invariance [was not ok, up to and including robustbase_0.7-8]
a1 <- adjboxStats( ccA, doReflect = TRUE)
a2 <- adjboxStats(-ccA, doReflect = TRUE)

nm1 <- c("stats", "conf", "fence")
stopifnot(all.equal( a1[nm1],

lapply(a2[nm1], function(u) rev(-u))),
all.equal(a1[["out"]], -a2[["out"]]))

adjOutlyingness Compute (Skewness-adjusted) Multivariate Outlyingness

Description

For an n × p data matrix (or data frame) x, compute the “outlyingness” of all n observations.
Outlyingness here is a generalization of the Donoho-Stahel outlyingness measure, where skewness
is taken into account via the medcouple, mc().

Usage

adjOutlyingness(x, ndir = 250, p.samp = p, clower = 4, cupper = 3,
IQRtype = 7,
alpha.cutoff = 0.75, coef = 1.5,
qr.tol = 1e-12, keep.tol = 1e-12,
only.outlyingness = FALSE, maxit.mult = max(100, p),
trace.lev = 0,
mcReflect = n <= 100, mcScale = TRUE, mcMaxit = 2*maxit.mult,
mcEps1 = 1e-12, mcEps2 = 1e-15,
mcTrace = max(0, trace.lev-1))

Arguments

x a numeric n× p matrix or data.frame, which must be of full rank p.

ndir positive integer specifying the number of directions that should be searched.

p.samp the sample size to use for finding good random directions, must be at least p.
The default, p had been hard coded previously.

clower, cupper the constant to be used for the lower and upper tails, in order to transform the
data towards symmetry. You can set clower = 0, cupper = 0 to get the non-
adjusted, i.e., classical (“central” or “symmetric”) outlyingness. In that case,
mc() is not used.
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IQRtype a number from 1:9, denoting type of empirical quantile computation for the
IQR(). The default 7 corresponds to quantile’s and IQR’s default. MM has
evidence that type=6 would be a bit more stable for small sample size.

alpha.cutoff number in (0,1) specifying the quantiles (α, 1 − α) which determine the “out-
lier” cutoff. The default, using quartiles, corresponds to the definition of the
medcouple (mc), but there is no stringent reason for using the same alpha for the
outlier cutoff.

coef positive number specifying the factor with which the interquartile range (IQR) is
multiplied to determine ‘boxplot hinges’-like upper and lower bounds.

qr.tol positive tolerance to be used for qr and solve.qr for determining the ndir
directions, each determined by a random sample of p (out of n) observations.
Note that the default 10−12 is rather small, and qr’s default = 1e-7 may be more
appropriate.

keep.tol positive tolerance to determine which of the sample direction should be kept,
namely only those for which ∥x∥ · ∥B∥ is larger than keep.tol.

only.outlyingness

logical indicating if the final outlier determination should be skipped. In that
case, a vector is returned, see ‘Value:’ below.

maxit.mult integer factor; maxit <- maxit.mult * ndir will determine the maximal num-
ber of direction searching iterations. May need to be increased for higher di-
mensional data, though increasing ndir may be more important.

trace.lev an integer, if positive allows to monitor the direction search.

mcReflect passed as doReflect to mc().

mcScale passed as doScale to mc().

mcMaxit passed as maxit to mc().

mcEps1 passed as eps1 to mc(); the default is slightly looser (100 larger) than the default
for mc().

mcEps2 passed as eps2 to mc().

mcTrace passed as trace.lev to mc().

Details

FIXME: Details in the comment of the Matlab code; also in the reference(s).

The method as described can be useful as preprocessing in FASTICA (http://research.ics.
aalto.fi/ica/fastica/ see also the R package fastICA.

Value

If only.outlyingness is true, a vector adjout, otherwise, as by default, a list with components

adjout numeric of length(n) giving the adjusted outlyingness of each observation.

cutoff cutoff for “outlier” with respect to the adjusted outlyingnesses, and depending
on alpha.cutoff.

nonOut logical of length(n), TRUE when the corresponding observation is non-outlying
with respect to the cutoff and the adjusted outlyingnesses.

http://research.ics.aalto.fi/ica/fastica/
http://research.ics.aalto.fi/ica/fastica/
https://CRAN.R-project.org/package=fastICA
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Note

If there are too many degrees of freedom for the projections, i.e., when n ≤ 4p, the current definition
of adjusted outlyingness is ill-posed, as one of the projections may lead to a denominator (quartile
difference) of zero, and hence formally an adjusted outlyingness of infinity. The current implemen-
tation avoids Inf results, but will return seemingly random adjout values of around 1014 −−1015

which may be completely misleading, see, e.g., the longley data example.

The result is random as it depends on the sample of ndir directions chosen; specifically, to get
sub samples the algorithm uses sample.int(n, p.samp) which from R version 3.6.0 depends on
RNGkind(*, sample.kind). Exact reproducibility of results from R versions 3.5.3 and earlier, re-
quires setting RNGversion("3.5.0"). In any case, do use set.seed() yourself for reproducibility!

Till Aug/Oct. 2014, the default values for clower and cupper were accidentally reversed, and the
signs inside exp(.) where swapped in the (now corrected) two expressions

tup <- Q3 + coef * IQR * exp(.... + clower * tmc * (tmc < 0))
tlo <- Q1 - coef * IQR * exp(.... - cupper * tmc * (tmc < 0))

already in the code from Antwerpen (‘mcrsoft/adjoutlingness.R’), contrary to the published
reference.

Further, the original algorithm had not been scale-equivariant in the direction construction, which
has been amended in 2014-10 as well.

The results, including diagnosed outliers, therefore have changed, typically slightly, since robust-
base version 0.92-0.

Author(s)

Guy Brys; help page and improvements by Martin Maechler

References

Brys, G., Hubert, M., and Rousseeuw, P.J. (2005) A Robustification of Independent Component
Analysis; Journal of Chemometrics, 19, 1–12.

Hubert, M., Van der Veeken, S. (2008) Outlier detection for skewed data; Journal of Chemometrics
22, 235–246; doi:10.1002/cem.1123.

For the up-to-date reference, please consult https://wis.kuleuven.be/statdatascience/robust

See Also

the adjusted boxplot, adjbox and the medcouple, mc.

Examples

## An Example with bad condition number and "border case" outliers

dim(longley) # 16 x 7 // set seed, as result is random :
set.seed(31)
ao1 <- adjOutlyingness(longley, mcScale=FALSE)
## which are outlying ?
which(!ao1$nonOut) ## for this seed, two: "1956", "1957"; (often: none)

https://doi.org/10.1002/cem.1123
https://wis.kuleuven.be/statdatascience/robust
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## For seeds 1:100, we observe (Linux 64b)
if(FALSE) {

adjO <- sapply(1:100, function(iSeed) {
set.seed(iSeed); adjOutlyingness(longley)$nonOut })

table(nrow(longley) - colSums(adjO))
}
## #{outl.}: 0 1 2 3
## #{cases}: 74 17 6 3

## An Example with outliers :

dim(hbk)
set.seed(1)
ao.hbk <- adjOutlyingness(hbk)
str(ao.hbk)
hist(ao.hbk $adjout)## really two groups
table(ao.hbk$nonOut)## 14 outliers, 61 non-outliers:
## outliers are :
which(! ao.hbk$nonOut) # 1 .. 14 --- but not for all random seeds!

## here, they are(*) the same as found by (much faster) MCD:
## *) only "almost", since the 2023-05 change to covMcd()
cc <- covMcd(hbk)
table(cc = cc$mcd.wt, ao = ao.hbk$nonOut)# one differ..:
stopifnot(sum(cc$mcd.wt != ao.hbk$nonOut) <= 1)

## This is revealing: About 1--2 cases, where outliers are *not* == 1:14
## (2023: ~ 1/8 [sec] per call)
if(interactive()) {

for(i in 1:30) {
print(system.time(ao.hbk <- adjOutlyingness(hbk)))
if(!identical(iout <- which(!ao.hbk$nonOut), 1:14)) {

cat("Outliers:\n"); print(iout)
}

}
}

## "Central" outlyingness: *not* calling mc() anymore, since 2014-12-11:
trace(mc)
out <- capture.output(

oo <- adjOutlyingness(hbk, clower=0, cupper=0)
)
untrace(mc)
stopifnot(length(out) == 0)

## A rank-deficient case
T <- tcrossprod(data.matrix(toxicity))
try(adjOutlyingness(T, maxit. = 20, trace.lev = 2)) # fails and recommends:
T. <- fullRank(T)
aT <- adjOutlyingness(T.)
plot(sort(aT$adjout, decreasing=TRUE), log="y")
plot(T.[,9:10], col = (1:2)[1 + (aT$adjout > 10000)])
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## .. (not conclusive; directions are random, more 'ndir' makes a difference!)

aircraft Aircraft Data

Description

Aircraft Data, deals with 23 single-engine aircraft built over the years 1947-1979, from Office of
Naval Research. The dependent variable is cost (in units of $100,000) and the explanatory variables
are aspect ratio, lift-to-drag ratio, weight of plane (in pounds) and maximal thrust.

Usage

data(aircraft, package="robustbase")

Format

A data frame with 23 observations on the following 5 variables.

X1 Aspect Ratio

X2 Lift-to-Drag Ratio

X3 Weight

X4 Thrust

Y Cost

Source

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, page
154, table 22.

Examples

data(aircraft)
summary( lm.airc <- lm(Y ~ ., data = aircraft))
summary(rlm.airc <- MASS::rlm(Y ~ ., data = aircraft))

aircraft.x <- data.matrix(aircraft[,1:4])
c_air <- covMcd(aircraft.x)
c_air
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airmay Air Quality Data

Description

Air Quality Data Set for May 1973, from Chambers et al. (1983). The whole data set consists of
daily readings of air quality values from May 1, 1973 to September 30, 1973, but here are included
only the values for May. This data set is an example of the special treatment of the missing values.

Usage

data(airmay, package="robustbase")

Format

A data frame with 31 observations on the following 4 variables.

X1 Solar Radiation in Longleys in the frequency band 4000-7700 from 0800 to 1200 hours at Cen-
tral Park

X2 Average windspeed (in miles per hour) between 7000 and 1000 hours at La Guardia Airport

X3 Maximum daily temperature (in degrees Fahrenheit) at La Guardia Airport

Y Mean ozone concentration (in parts per billion) from 1300 to 1500 hours at Roosevelt Island

Source

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, p.86,
table 6.

Examples

data(airmay)
summary(lm.airmay <- lm(Y ~ ., data=airmay))

airmay.x <- data.matrix(airmay[,1:3])

alcohol Alcohol Solubility in Water Data

Description

The solubility of alcohols in water is important in understanding alcohol transport in living organ-
isms. This dataset from (Romanelli et al., 2001) contains physicochemical characteristics of 44
aliphatic alcohols. The aim of the experiment was the prediction of the solubility on the basis of
molecular descriptors.
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Usage

data(alcohol, package="robustbase")

Format

A data frame with 44 observations on the following 7 numeric variables.

SAG solvent accessible surface-bounded molecular volume.

V volume

logPC Log(PC); PC = octanol-water partitions coefficient

P polarizability

RM molar refractivity

Mass the mass

logSolubility ln(Solubility), the response.

Source

The website accompanying the MMY-book: https://www.wiley.com/legacy/wileychi/robust_
statistics/

References

Maronna, R.A., Martin, R.D. and Yohai, V.J. (2006) Robust Statistics, Theory and Methods, Wiley.

Examples

data(alcohol)
## version of data set with trivial names, as
s.alcohol <- alcohol
names(s.alcohol) <- paste("Col", 1:7, sep='')

ambientNOxCH Daily Means of NOx (mono-nitrogen oxides) in air

Description

This dataset contains daily means (from midnight to midnight) of NOx, i.e., mono-nitrogen oxides,
in [ppb] at 13 sites in central Switzerland and Aarau for the year 2004.

Usage

data(ambientNOxCH, package="robustbase")

https://www.wiley.com/legacy/wileychi/robust_statistics/
https://www.wiley.com/legacy/wileychi/robust_statistics/
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Format

A data frame with 366 observations on the following 14 variables.

date date of day, of class "Date".

ad Site is located north of Altdorf 100 meters east of motorway A2, on an open field at the begin-
ning of a more than 2000m deep valley (690.175, 193.55; 438; inLuft)

ba Site is located in the centre of the little town of Baden in a residential area. Baden has 34’000
inhabitants and is situated on the swiss plateau (666.075, 257.972; 377; inLuft).

ef Site is located 6 km south of altdorf and 800 m north of the village of Erstfeld. The motorway
A2 passes 5 m west of the measuring site. Over 8 million vehicles have passed Erstfeld in
2004 where 13% of the counts were attributed to trucks (691.43, 187.69; 457; MFM-U).

la Site is located on a wooded hill in a rural area called Laegern, about 190 m above Baden, which
is about 5 km away (669.8, 259; 690; NABEL).

lu Site is located in the center of town of Lucerne, which has 57’000 inhabitants (666.19, 211.975;
460; inLuft).

re Site is located 1 km west of Reiden on the Swiss plateau. The motorway A2 passes 5 m west of
the measuring site (639.56, 232.11; 462; MFM-U).

ri Site is located at Rigi Seebodenalp, 649 m above the lake of Lucerne on an alp with half a dozen
small houses (677.9, 213.5; 1030; NABEL).

se Site is located in Sedel next to town of Lucerne 35m above and 250m south of motorway A14
from Zug to Lucerne on a low hill with free 360° panorama (665.5, 213.41; 484; inLuft).

si Site is located at the border of a small industrial area in Sisseln, 300 m east of a main road
(640.725, 266.25; 305; inLuft).

st Site is located at the south east border of Stans with 7’000 inhabitants (670.85, 201.025; 438;
inLuft).

su Site is located in the center of Suhr (8700 inhabitants), 10 m from the main road (648.49,
246.985; 403; inLuft).

sz Site is located in Schwyz (14’200 inhabitants) near a shopping center (691.92, 208.03; 470;
inLuft).

zg Site is located in the centre of Zug with 22’000 inhabitants, 24 m from the main road (681.625,
224.625; 420; inLuft).

Details

The 13 sites are part of one of the three air quality monitoring networks: inLuft (regional authorities
of central Switzerland and canton Aargau)
NABEL (Swiss federal network)
MFM-U (Monitoring flankierende Massnahmen Umwelt), special Swiss federal network along tran-
sit motorways A2 and A13 from Germany to Italy through Switzerland
The information within the brackets means: Swiss coordinates km east, km north; m above sea
level; network

When the measuring sites are exposed to the same atmospheric condition and when there is no
singular emission event at any site, log(mean(NOx) of a specific day at each site) is a linear
function of log(yearly.mean(NOx) at the corresponding site). The offset and the slope of
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the straight line reflects the atmospheric conditions at this specific day. During winter time, often
an inversion prevents the emissions from being diluted vertically, so that there evolve two separate
atmospheric compartements: One below the inversion boundary with polluted air and one above
with relatively clean air. In our example below, Rigi Seebodenalp is above the inversion boundary
between December 10th and 12th.

Source

http://www.in-luft.ch/
http://www.empa.ch/plugin/template/empa/*/6794
http://www.bafu.admin.ch/umweltbeobachtung/02272/02280

See Also

another NOx dataset, NOxEmissions.

Examples

data(ambientNOxCH)
str (ambientNOxCH)

yearly <- log(colMeans(ambientNOxCH[,-1], na.rm=TRUE))
xlim <- range(yearly)
lNOx <- log(ambientNOxCH[, -1])
days <- ambientNOxCH[, "date"]

## Subset of 9 days starting at April 4:
idays <- seq(which(ambientNOxCH$date=="2004-12-04"), length=9)
ylim <- range(lNOx[idays,],na.rm=TRUE)
op <- par(mfrow=c(3,3),mar=rep(1,4), oma = c(0,0,2,0))

for (id in idays) {
daily <- unlist(lNOx[id,])
plot(NA, xlim=xlim,ylim=ylim, ann=FALSE, type = "n")
abline(0:1, col="light gray")
abline(lmrob(daily~yearly, na.action=na.exclude),

col="red", lwd=2)
text(yearly, daily, names(yearly), col="blue")
mtext(days[id], side=1, line=-1.2, cex=.75, adj=.98)

}
mtext("Daily ~ Yearly log( NOx mean values ) at 13 Swiss locations",

outer=TRUE)
par(op)

## do all 366 regressions: Least Squares and Robust:
LS <- lapply(1:nrow(ambientNOxCH), function(id)

lm(unlist(lNOx[id,]) ~ yearly,
na.action = na.exclude))

R <- lapply(1:nrow(ambientNOxCH),
function(id) lmrob(unlist(lNOx[id,]) ~ yearly,

na.action = na.exclude))
## currently 4 warnings about non-convergence;
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## which ones?
days[notOk <- ! sapply(R, `[[`, "converged") ]
## "2004-01-10" "2004-05-12" "2004-05-16" "2004-11-16"

## first problematic case:
daily <- unlist(lNOx[which(notOk)[1],])
plot(daily ~ yearly,

main = paste("lmrob() non-convergent:",days[notOk[1]]))
rr <- lmrob(daily ~ yearly, na.action = na.exclude,

control = lmrob.control(trace=3, max.it = 100))
##-> 53 iter.

## Look at all coefficients:
R.cf <- t(sapply(R, coef))
C.cf <- t(sapply(LS, coef))
plot(C.cf, xlim=range(C.cf[,1],R.cf[,1]),

ylim=range(C.cf[,2],R.cf[,2]))
mD1 <- rowMeans(abs(C.cf - R.cf))
lrg <- mD1 > quantile(mD1, 0.80)
arrows(C.cf[lrg,1], C.cf[lrg,2],

R.cf[lrg,1], R.cf[lrg,2], length=.1, col="light gray")
points(R.cf, col=2)

## All robustness weights
aW <- t(sapply(R, weights, type="robustness"))
colnames(aW) <- names(yearly)
summary(aW)
sort(colSums(aW < 0.05, na.rm = TRUE)) # how often "clear outlier":
# lu st zg ba se sz su si re la ef ad ri
# 0 0 0 1 1 1 2 3 4 10 14 17 48

lattice::levelplot(aW, asp=1/2, main="Robustness weights",
xlab= "day", ylab= "site")

Animals2 Brain and Body Weights for 65 Species of Land Animals

Description

A data frame with average brain and body weights for 62 species of land mammals and three others.

Note that this is simply the union of Animals and mammals.

Usage

Animals2

Format

body body weight in kg

brain brain weight in g
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Note

After loading the MASS package, the data set is simply constructed by Animals2 <- local({D <-
rbind(Animals, mammals); unique(D[order(D$body,D$brain),])}).

Rousseeuw and Leroy (1987)’s ‘brain’ data is the same as MASS’s Animals (with Rat and Bra-
chiosaurus interchanged, see the example below).

Source

Weisberg, S. (1985) Applied Linear Regression. 2nd edition. Wiley, pp. 144–5.

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley, p. 57.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Forth Edition. Springer.

Examples

data(Animals2)
## Sensible Plot needs doubly logarithmic scale
plot(Animals2, log = "xy")

## Regression example plot:
plotbb <- function(bbdat) {

d.name <- deparse(substitute(bbdat))
plot(log(brain) ~ log(body), data = bbdat, main = d.name)
abline( lm(log(brain) ~ log(body), data = bbdat))
abline(MASS::rlm(log(brain) ~ log(body), data = bbdat), col = 2)
legend("bottomright", leg = c("lm", "rlm"), col=1:2, lwd=1, inset = 1/20)

}
plotbb(bbdat = Animals2)

## The `same' plot for Rousseeuw's subset:
data(Animals, package = "MASS")
brain <- Animals[c(1:24, 26:25, 27:28),]
plotbb(bbdat = brain)

lbrain <- log(brain)
plot(mahalanobis(lbrain, colMeans(lbrain), var(lbrain)),

main = "Classical Mahalanobis Distances")
mcd <- covMcd(lbrain)
plot(mahalanobis(lbrain,mcd$center,mcd$cov),

main = "Robust (MCD) Mahalanobis Distances")

anova.glmrob Analysis of Robust Quasi-Deviance for "glmrob" Objects

https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=MASS
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Description

Compute an analysis of robust quasi-deviance table for one or more generalized linear models fitted
by glmrob.

Usage

## S3 method for class 'glmrob'
anova(object, ..., test = c("Wald", "QD", "QDapprox"))

Arguments

object, ... objects of class glmrob, typically the result of a call to glmrob.

test a character string specifying the test statistic to be used. (Partially) matching
one of "Wald", "QD" or "QDapprox". See Details.

Details

Specifying a single object gives a sequential analysis of robust quasi-deviance table for that fit. That
is, the reductions in the robust residual quasi-deviance as each term of the formula is added in turn
are given in as the rows of a table. (Currently not yet implemented.)

If more than one object is specified, the table has a row for the residual quasi-degrees of freedom
(However, this information is never used in the asymptotic tests). For all but the first model, the
change in degrees of freedom and robust quasi-deviance is also given. (This only makes statistical
sense if the models are nested.) It is conventional to list the models from smallest to largest, but this
is up to the user.

In addition, the table will contain test statistics and P values comparing the reduction in robust
quasi-deviance for the model on the row to that on top of it. For all robust fitting methods, the
“Wald”-type test between two models can be applied (test = "Wald").

When using Mallows or Huber type robust estimators (method="Mqle" in glmrob), then there are
additional test methods. One is the robust quasi-deviance test (test = "QD"), as described by Can-
toni and Ronchetti (2001). The asymptotic distribution is approximated by a chi-square distibu-
tion. Another test (test = "QDapprox") is based on a quadratic approximation of the robust quasi-
deviance test statistic. Its asymptotic distribution is chi-square (see the reference).

The comparison between two or more models by anova.glmrob will only be valid if they are fitted
to the same dataset and by the same robust fitting method using the same tuning constant c (tcc in
glmrob).

Value

Basically, an object of class anova inheriting from class data.frame.

Author(s)

Andreas Ruckstuhl
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References

E. Cantoni and E. Ronchetti (2001) Robust Inference for Generalized Linear Models. JASA 96
(455), 1022–1030.

E.Cantoni (2004) Analysis of Robust Quasi-deviances for Generalized Linear Models. Journal of
Statistical Software 10, https://www.jstatsoft.org/article/view/v010i04

See Also

glmrob, anova.

Examples

## Binomial response -----------
data(carrots)
Cfit2 <- glmrob(cbind(success, total-success) ~ logdose + block,

family=binomial, data=carrots, method="Mqle",
control=glmrobMqle.control(tcc=1.2))

summary(Cfit2)

Cfit4 <- glmrob(cbind(success, total-success) ~ logdose * block,
family=binomial, data=carrots, method="Mqle",
control=glmrobMqle.control(tcc=1.2))

anova(Cfit2, Cfit4, test="Wald")

anova(Cfit2, Cfit4, test="QD")

anova(Cfit2, Cfit4, test="QDapprox")

## Poisson response ------------
data(epilepsy)

Efit2 <- glmrob(Ysum ~ Age10 + Base4*Trt, family=poisson, data=epilepsy,
method="Mqle", control=glmrobMqle.control(tcc=1.2,maxit=100))

summary(Efit2)

Efit3 <- glmrob(Ysum ~ Age10 + Base4 + Trt, family=poisson, data=epilepsy,
method="Mqle", control=glmrobMqle.control(tcc=1.2,maxit=100))

anova(Efit3, Efit2, test = "Wald")

anova(Efit3, Efit2, test = "QD")

## trivial intercept-only-model:
E0 <- update(Efit3, . ~ 1)
anova(E0, Efit3, Efit2, test = "QDapprox")

https://www.jstatsoft.org/article/view/v010i04
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anova.lmrob Analysis of Robust Deviances (’anova’) for "lmrob" Objects

Description

Compute an analysis of robust Wald-type or deviance-type test tables for one or more linear regres-
sion models fitted by lmrob.

Usage

## S3 method for class 'lmrob'
anova(object, ..., test = c("Wald", "Deviance"),

verbose = getOption("verbose"))

Arguments

object, ... objects of class "lmrob", typically the result of a call to lmrob. ... arguments
may also be symbolic descriptions of the reduced models (cf. argument formula
in lm).

test a character string specifying the test statistic to be used. Can be one of "Wald"
or "Deviance", with partial matching allowed, for specifying a "Wald"-type test
or "Deviance"-type test.

verbose logical; if true some informative messages are printed.

Details

Specifying a single object gives a sequential analysis of a robust quasi-deviance table for that fit.
That is, the reductions in the robust residual deviance as each term of the formula is added in turn
are given in as the rows of a table. (Currently not yet implemented.)

If more than one object is specified, the table has a row for the residual quasi-degrees of freedom
(however, this information is never used in the asymptotic tests). For all but the first model, the
change in degrees of freedom and robust deviance is also given. (This only makes statistical sense
if the models are nested.) As opposed to the convention, the models are forced to be listed from
largest to smallest due to computational reasons.

In addition, the table will contain test statistics and P values comparing the reduction in robust
deviances for the model on the row to that on top of it. There are two different robust tests available:
The "Wald"-type test (test = "Wald") and the Deviance-type test (test = "Deviance"). When
using formula description of the nested models in the dot arguments and test = "Deviance", you
may be urged to supply a lmrob fit for these models by an error message. This happens when the
coefficients of the largest model reduced to the nested models result in invalid initial estimates for
the nested models (indicated by robustness weights which are all 0).

The comparison between two or more models by anova.lmrob will only be valid if they are fitted
to the same dataset.

Value

Basically, an object of class anova inheriting from class data.frame.
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Author(s)

Andreas Ruckstuhl

See Also

lmrob, anova.

Examples

data(salinity)
summary(m0.sali <- lmrob(Y ~ . , data = salinity))
anova(m0.sali, Y ~ X1 + X3)
## -> X2 is not needed
(m1.sali <- lmrob(Y ~ X1 + X3, data = salinity))
anova(m0.sali, m1.sali) # the same as before
anova(m0.sali, m1.sali, test = "Deviance")
## whereas 'X3' is highly significant:
m2 <- update(m0.sali, ~ . -X3)
anova(m0.sali, m2)
anova(m0.sali, m2, test = "Deviance")
## Global test [often not interesting]:
anova(m0.sali, update(m0.sali, . ~ 1), test = "Wald")
anova(m0.sali, update(m0.sali, . ~ 1), test = "Deviance")

if(require("MPV")) { ## Montgomery, Peck & Vining datasets
Jet <- table.b13
Jet.rflm1 <- lmrob(y ~ ., data=Jet,

control = lmrob.control(max.it = 500))
summary(Jet.rflm1)

anova(Jet.rflm1, y ~ x1 + x5 + x6, test="Wald")

try( anova(Jet.rflm1, y ~ x1 + x5 + x6, test="Deviance") )
## -> Error in anovaLm.... Please fit the nested models by lmrob

## {{ since all robustness weights become 0 in the nested model ! }}

## Ok: Do as the error message told us:
## test by comparing the two *fitted* models:

Jet.rflm2 <- lmrob(y ~ x1 + x5 + x6, data=Jet,
control=lmrob.control(max.it=100))

anova(Jet.rflm1, Jet.rflm2, test="Deviance")

} # end{"MPV" data}



24 biomassTill

biomassTill Biomass Tillage Data

Description

An agricultural experiment in which different tillage methods were implemented. The effects of
tillage on plant (maize) biomass were subsequently determined by modeling biomass accumulation
for each tillage treatment using a 3 parameter Weibull function.

A datset where the total biomass is modeled conditional on a three value factor, and hence vector
parameters are used.

Usage

data("biomassTill", package="robustbase")

Format

A data frame with 58 observations on the following 3 variables.

Tillage Tillage treatments, a factor with levels

CA-: a no-tillage system with plant residues removed
CA+: a no-tillage system with plant residues retained
CT: a conventionally tilled system with residues incorporated

DVS the development stage of the maize crop. A DVS of 1 represents maize anthesis (flowering),
and a DVS of 2 represents physiological maturity. For the data, numeric vector with 5 different
values between 0.5 and 2.

Biomass accumulated biomass of maize plants from each tillage treatment.

Biom.2 the same as Biomass, but with three values replaced by “gross errors”.

Source

From Strahinja Stepanovic and John Laborde, Department of Agronomy & Horticulture, University
of Nebraska-Lincoln, USA

Examples

data(biomassTill)
str(biomassTill)
require(lattice)
## With long tailed errors
xyplot(Biomass ~ DVS | Tillage, data = biomassTill, type=c("p","smooth"))
## With additional 2 outliers:
xyplot(Biom.2 ~ DVS | Tillage, data = biomassTill, type=c("p","smooth"))

### Fit nonlinear Regression models: -----------------------------------

## simple starting values, needed:
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m00st <- list(Wm = rep(300, 3),
a = rep( 1.5, 3),
b = rep( 2.2, 3))

robm <- nlrob(Biomass ~ Wm[Tillage] * (-expm1(-(DVS/a[Tillage])^b[Tillage])),
data = biomassTill, start = m00st, maxit = 200)

## -----------
summary(robm) ## ... 103 IRWLS iterations
plot(sort(robm$rweights), log = "y",

main = "ordered robustness weights (log scale)")
mtext(getCall(robm))

## the classical (only works for the mild outliers):
cl.m <- nls(Biomass ~ Wm[Tillage] * (-expm1(-(DVS/a[Tillage])^b[Tillage])),

data = biomassTill, start = m00st)

## now for the extra-outlier data: -- fails with singular gradient !!
try(
rob2 <- nlrob(Biom.2 ~ Wm[Tillage] * (-expm1(-(DVS/a[Tillage])^b[Tillage])),

data = biomassTill, start = m00st)
)
## use better starting values:
m1st <- setNames(as.list(as.data.frame(matrix(

coef(robm), 3))),
c("Wm", "a","b"))

try(# just breaks a bit later!
rob2 <- nlrob(Biom.2 ~ Wm[Tillage] * (-expm1(-(DVS/a[Tillage])^b[Tillage])),

data = biomassTill, start = m1st, maxit= 200, trace=TRUE)
)

## Comparison {more to come} % once we have "MM" working...
rbind(start = unlist(m00st),

class = coef(cl.m),
rob = coef(robm))

bushfire Campbell Bushfire Data

Description

This data set was used by Campbell (1984) to locate bushfire scars. The dataset contains satelite
measurements on five frequency bands, corresponding to each of 38 pixels.

Usage

data(bushfire, package="robustbase")

Format

A data frame with 38 observations on 5 variables.
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Source

Maronna, R.A. and Yohai, V.J. (1995) The Behavoiur of the Stahel-Donoho Robust Multivariate
Estimator. Journal of the American Statistical Association 90, 330–341.

Examples

data(bushfire)
plot(bushfire)
covMcd(bushfire)

BYlogreg Bianco-Yohai Estimator for Robust Logistic Regression

Description

Computation of the estimator of Bianco and Yohai (1996) in logistic regression. Now provides both
the weighted and regular (unweighted) BY-estimator.

By default, an intercept term is included and p parameters are estimated. For more details, see the
reference.

Note: This function is for “back-compatibility” with the BYlogreg() code web-published at KU
Leuven, Belgium, and also available as file ‘FunctionsRob/BYlogreg.ssc’ from https://www.
wiley.com/legacy/wileychi/robust_statistics/robust.html.

However instead of using this function, the recommended interface is glmrob(*, method = "BY")
or ... method = "WBY" .., see glmrob.

Usage

BYlogreg(x0, y, initwml = TRUE, addIntercept = TRUE,
const = 0.5, kmax = 1000, maxhalf = 10, sigma.min = 1e-4,
trace.lev = 0)

Arguments

x0 a numeric n× (p− 1) matrix containing the explanatory variables.

y numeric n-vector of binomial (0 - 1) responses.

initwml logical for selecting one of the two possible methods for computing the initial
value of the optimization process.
If initwml is true (default), a weighted ML estimator is computed with weights
derived from the MCD estimator computed on the explanatory variables.
If initwml is false, a classical ML fit is perfomed. When the explanatory vari-
ables contain binary observations, it is recommended to set initwml to FALSE
or to modify the code of the algorithm to compute the weights only on the con-
tinuous variables.

addIntercept logical indicating that a column of 1 must be added the x matrix.

const tuning constant used in the computation of the estimator (default=0.5).

https://www.wiley.com/legacy/wileychi/robust_statistics/robust.html
https://www.wiley.com/legacy/wileychi/robust_statistics/robust.html
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kmax maximum number of iterations before convergence (default=1000).

maxhalf max number of step-halving (default=10).

sigma.min smallest value of the scale parameter before implosion (and hence non-convergence)
is assumed.

trace.lev logical (or integer) indicating if intermediate results should be printed; defaults
to 0 (the same as FALSE).

Value

a list with components

convergence logical indicating if convergence was achieved

objective the value of the objective function at the minimum

coefficients vector of parameter estimates

vcov variance-covariance matrix of the coefficients (if convergence is TRUE).

sterror standard errors, i.e., simply sqrt(diag(.$vcov)), if convergence.

Author(s)

Originally, Christophe Croux and Gentiane Haesbroeck, with thanks to Kristel Joossens and Valentin
Todorov for improvements.

Speedup, tweaks, more “control” arguments: Martin Maechler.

References

Croux, C., and Haesbroeck, G. (2003) Implementing the Bianco and Yohai estimator for Logistic
Regression, Computational Statistics and Data Analysis 44, 273–295.

Ana M. Bianco and Víctor J. Yohai (1996) Robust estimation in the logistic regression model. In
Helmut Rieder, Robust Statistics, Data Analysis, and Computer Intensive Methods, Lecture Notes
in Statistics 109, pages 17–34.

See Also

The more typical way to compute BY-estimates (via formula and methods): glmrob(*, method =
"WBY") and .. method = "BY".

Examples

set.seed(17)
x0 <- matrix(rnorm(100,1))
y <- rbinom(100, size=1, prob= 0.5) # ~= as.numeric(runif(100) > 0.5)
BY <- BYlogreg(x0,y)
BY <- BYlogreg(x0,y, trace.lev=TRUE)

## The "Vaso Constriction" aka "skin" data:
data(vaso)
vX <- model.matrix( ~ log(Volume) + log(Rate), data=vaso)
vY <- vaso[,"Y"]
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head(cbind(vX, vY))# 'X' does include the intercept

vWBY <- BYlogreg(x0 = vX, y = vY, addIntercept=FALSE) # as 'vX' has it already
v.BY <- BYlogreg(x0 = vX, y = vY, addIntercept=FALSE, initwml=FALSE)
## they are relatively close, well used to be closer than now,
## with the (2023-05, VT) change of covMcd() scale-correction
stopifnot( all.equal(vWBY, v.BY, tolerance = 0.008) ) # was ~ 1e-4 till 2023-05

carrots Insect Damages on Carrots

Description

The damage carrots data set from Phelps (1982) was used by McCullagh and Nelder (1989) in order
to illustrate diagnostic techniques because of the presence of an outlier. In a soil experiment trial
with three blocks, eight levels of insecticide were applied and the carrots were tested for insect
damage.

Usage

data(carrots, package="robustbase")

Format

A data frame with 24 observations on the following 4 variables.

success integer giving the number of carrots with insect damage.

total integer giving the total number of carrots per experimental unit.

logdose a numeric vector giving log(dose) values (eight different levels only).

block factor with levels B1 to B3

Source

Phelps, K. (1982). Use of the complementary log-log function to describe doseresponse relation-
ships in insecticide evaluation field trials.
In R. Gilchrist (Ed.), Lecture Notes in Statistics, No. 14. GLIM.82: Proceedings of the International
Conference on Generalized Linear Models; Springer-Verlag.

References

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

Eva Cantoni and Elvezio Ronchetti (2001); JASA, and
Eva Cantoni (2004); JSS, see glmrob
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Examples

data(carrots)
str(carrots)
plot(success/total ~ logdose, data = carrots, col = as.integer(block))
coplot(success/total ~ logdose | block, data = carrots)

## Classical glm
Cfit0 <- glm(cbind(success, total-success) ~ logdose + block,

data=carrots, family=binomial)
summary(Cfit0)

## Robust Fit (see help(glmrob)) ....

chgDefaults-methods Change Defaults (Parameters) of "Psi Function" Objects

Description

To modify an object of class psi_func, i.e. typically change the tuning parameters, the generic
function chgDefaults() is called and works via the corresponding method.

Methods

object = "psi_func" The method is used to change the default values for the tuning parameters,
and returns an object of class psi_func, a copy of input object with the slot tDefs possibly
changed;.

See Also

psiFunc

Examples

## Hampel's psi and rho:
H.38 <- chgDefaults(hampelPsi, k = c(1.5, 3.5, 8))
H.38
plot(H.38)
## for more see ?psiFunc
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classPC Compute Classical Principal Components via SVD or Eigen

Description

Compute classical principal components (PC) via SVD (svd or eigenvalue decomposition (eigen)
with non-trivial rank determination.

Usage

classPC(x, scale = FALSE, center = TRUE, signflip = TRUE,
via.svd = n > p, scores = FALSE)

Arguments

x a numeric matrix.

scale logical indicating if the matrix should be scaled; it is mean centered in any case
(via scale(*, scale=scale)c

center logical or numeric vector for “centering” the matrix.

signflip logical indicating if the sign(.) of the loadings should be determined should
flipped such that the absolutely largest value is always positive.

via.svd logical indicating if the computation is via SVD or Eigen decomposition; the
latter makes sense typically only for n <= p.

scores logical indicating

Value

a list with components

rank the (numerical) matrix rank of x; an integer number, say k, from 0:min(dim(x)).
In the n > p case, it is rankMM(x).

eigenvalues the k eigenvalues, in the n > p case, proportional to the variances.

loadings the loadings, a p× k matrix.

scores if the scores argument was true, the n×k matrix of scores, where k is the rank
above.

center a numeric p-vector of means, unless the center argument was false.

scale if the scale argument was not false, the scale used, a p-vector.

Author(s)

Valentin Todorov; efficiency tweaks by Martin Maechler

See Also

In spirit very similar to R’s standard prcomp and princomp, one of the main differences being how
the rank is determined via a non-trivial tolerance.
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Examples

set.seed(17)
x <- matrix(rnorm(120), 10, 12) # n < p {the unusual case}
pcx <- classPC(x)
(k <- pcx$rank) # = 9 [after centering!]
pc2 <- classPC(x, scores=TRUE)
pcS <- classPC(x, via.svd=TRUE)
all.equal(pcx, pcS, tol = 1e-8)
## TRUE: eigen() & svd() based PC are close here
pc0 <- classPC(x, center=FALSE, scale=TRUE)
pc0$rank # = 10 here *no* centering (as E[.] = 0)

## Loadings are orthnormal:
zapsmall( crossprod( pcx$loadings ) )

## PC Scores are roughly orthogonal:
S.S <- crossprod(pc2$scores)
print.table(signif(zapsmall(S.S), 3), zero.print=".")
stopifnot(all.equal(pcx$eigenvalues, diag(S.S)/k))

## the usual n > p case :
pc.x <- classPC(t(x))
pc.x$rank # = 10, full rank in the n > p case

cpc1 <- classPC(cbind(1:3)) # 1-D matrix
stopifnot(cpc1$rank == 1,

all.equal(cpc1$eigenvalues, 1),
all.equal(cpc1$loadings, 1))

cloud Cloud point of a Liquid

Description

This data set contains the measurements concerning the cloud point of a Liquid, from Draper and
Smith (1969). The cloud point is a measure of the degree of crystallization in a stock.

Usage

data(cloud, package="robustbase")

Format

A data frame with 19 observations on the following 2 variables.

Percentage Percentage of I-8

CloudPoint Cloud point
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Source

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, p.96,
table 10.

Examples

data(cloud)
summary(lm.cloud <- lm(CloudPoint ~., data=cloud))

coleman Coleman Data Set

Description

Contains information on 20 Schools from the Mid-Atlantic and New England States, drawn from
a population studied by Coleman et al. (1966). Mosteller and Tukey (1977) analyze this sample
consisting of measurements on six different variables, one of which will be treated as a responce.

Usage

data(coleman, package="robustbase")

Format

A data frame with 20 observations on the following 6 variables.

salaryP staff salaries per pupil

fatherWc percent of white-collar fathers

sstatus socioeconomic status composite deviation: means for family size, family intactness, fa-
ther’s education, mother’s education, and home items

teacherSc mean teacher’s verbal test score

motherLev mean mother’s educational level, one unit is equal to two school years

Y verbal mean test score (y, all sixth graders)

Author(s)

Valentin Todorov

Source

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection Wiley, p.79, table
2.
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Examples

data(coleman)
pairs(coleman)
summary( lm.coleman <- lm(Y ~ . , data = coleman))
summary(lts.coleman <- ltsReg(Y ~ . , data = coleman))

coleman.x <- data.matrix(coleman[, 1:6])
(Cc <- covMcd(coleman.x))

colMedians Fast Row or Column-wise Medians of a Matrix

Description

Calculates the median for each row (column) of a matrix x. This is the same as but more efficient
than apply(x, MM, median) for MM=2 or MM=1, respectively.

Usage

colMedians(x, na.rm = FALSE, hasNA = TRUE, keep.names=TRUE)
rowMedians(x, na.rm = FALSE, hasNA = TRUE, keep.names=TRUE)

Arguments

x a numeric n× p matrix.

na.rm if TRUE, NAs are excluded first, otherwise not.

hasNA logical indicating if x may contain NAs. If set to FALSE, no internal NA handling
is performed which typically is faster.

keep.names logical indicating if row or column names of x should become names of the
result - as is the case for apply(x, MM, median).

Details

The implementation of rowMedians() and colMedians() is optimized for both speed and mem-
ory. To avoid coercing to doubles (and hence memory allocation), there is a special implementa-
tion for integer matrices. That is, if x is an integer matrix, then rowMedians(as.double(x))
(rowMedians(as.double(x))) would require three times the memory of rowMedians(x) (colMedians(x)),
but all this is avoided.

Value

a numeric vector of length n or p, respectively.
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Missing values

Missing values are excluded before calculating the medians unless hasNA is false. Note that na.rm
has no effect and is automatically false when hasNA is false, i.e., internally, before computations
start, the following is executed:

if (!hasNA) ## If there are no NAs, don't try to remove them
narm <- FALSE

Author(s)

Henrik Bengtsson, Harris Jaffee, Martin Maechler

See Also

See wgt.himedian() for a weighted hi-median, and colWeightedMedians() etc from package
matrixStats for weighted medians.
For mean estimates, see rowMeans() in colSums().

Examples

set.seed(1); n <- 234; p <- 543 # n*p = 127'062
x <- matrix(rnorm(n*p), n, p)
x[sample(seq_along(x), size= n*p / 256)] <- NA
R1 <- system.time(r1 <- rowMedians(x, na.rm=TRUE))
C1 <- system.time(y1 <- colMedians(x, na.rm=TRUE))
R2 <- system.time(r2 <- apply(x, 1, median, na.rm=TRUE))
C2 <- system.time(y2 <- apply(x, 2, median, na.rm=TRUE))
R2 / R1 # speedup factor: ~= 4 {platform dependent}
C2 / C1 # speedup factor: ~= 5.8 {platform dependent}
stopifnot(all.equal(y1, y2, tol=1e-15),

all.equal(r1, r2, tol=1e-15))

(m <- cbind(x1=3, x2=c(4:1, 3:4,4)))
stopifnot(colMedians(m) == 3,

all.equal(colMeans(m), colMedians(m)),# <- including names !
all.equal(rowMeans(m), rowMedians(m)))

condroz Condroz Data

Description

Dataset with pH-value and Calcium content in soil samples, collected in different communities
of the Condroz region in Belgium. The data pertain to a subset of 428 samples with a pH-value
between 7.0 and 7.5.

Usage

data(condroz, package="robustbase")

https://CRAN.R-project.org/package=matrixStats
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Format

A data frame with 428 observations on the following 2 variables.

Ca Calcium content of the soil sample

pH pH value of the soil sample

Details

For more information on the dataset, cf. Goegebeur et al. (2005).

Source

Hubert and Vandervieren (2006), p. 10. This dataset is also studied in Vandewalle et al. (2004).

References

See also those for adjbox.

Goegebeur, Y., Planchon, V., Beirlant, J., Oger, R. (2005). Quality Assesment of Pedochemical
Data Using Extreme Value Methodology, Journal of Applied Science, 5, p. 1092-1102.

Vandewalle, B., Beirlant, J., Hubert, M. (2004). A robust estimator of the tail index based on an
exponential regression model, in Hubert, M., Pison G., Struyf, A. and S. Van Aelst, ed., Theory and
Applications of Recent Robust Methods, Birkhäuser, Basel, p. 367-376.

Examples

adjbox(condroz$Ca)

covComed Co-Median Location and Scatter "Covariance" Estimator

Description

Compute (versions of) the (multivariate) “Comedian” covariance, i.e., multivariate location and
scatter estimator

Usage

covComed(X, n.iter = 2, reweight = FALSE, tolSolve = control$tolSolve,
trace = control$trace, wgtFUN = control$wgtFUN,
control = rrcov.control())
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Arguments

X data matrix of dimension, say n× p.

n.iter number of comedian() iterations. Can be as low as zero.

reweight logical indicating if the final distances and weights should be recomputed from
the final cov and center. The default is currently FALSE because that was im-
plicit in the first version of the R code.

tolSolve a numerical tolerance passed to solve.

trace logical (or integer) indicating if intermediate results should be printed; defaults
to FALSE; values ≥ 2 also produce print from the internal (Fortran) code.

wgtFUN a character string or function, specifying how the weights for the reweighting
step should be computed. The default, wgtFUN = "01.original" corresponds to
0-1 weights as proposed originally. Other predefined string options are available,
though experimental, see the experimental .wgtFUN.covComed object.

control a list with estimation options - this includes those above provided in the function
specification, see rrcov.control for the defaults. If control is supplied, the
parameters from it will be used. If parameters are passed also in the invocation
statement, they will override the corresponding elements of the control object.

Details

.. not yet ..

Value

an object of class "covComed" which is basically a list with components

comp1 Description of ’comp1’

comp2 Description of ’comp2’

... FIXME ...

Author(s)

Maria Anna di Palma (initial), Valentin Todorov and Martin Maechler

References

Falk, M. (1997) On mad and comedians. Annals of the Institute of Statistical Mathematics 49,
615–644.

Falk, M. (1998). A note on the comedian for elliptical distributions. Journal of Multivariate Anal-
ysis 67, 306–317.

See Also

covMcd, etc
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Examples

data(hbk)
hbk.x <- data.matrix(hbk[, 1:3])
(cc1 <- covComed(hbk.x))
(ccW <- covComed(hbk.x, reweight=TRUE))
cc0 <- covComed(hbk.x, n.iter=0)
cc0W <- covComed(hbk.x, n.iter=0, reweight=TRUE)

stopifnot(all.equal(unclass(cc0), # here, the 0-1 weights don't change:
cc0W[names(cc0)], tol=1e-12, check.environment = FALSE),

which(cc1$weights == 0) == 1:14,
which(ccW$weights == 0) == 1:14,
which(cc0$weights == 0) == 1:14)

## Martin's smooth reweighting:

## List of experimental pre-specified wgtFUN() creators:
## Cutoffs may depend on (n, p, control$beta) :
str(.wgtFUN.covComed)

covMcd Robust Location and Scatter Estimation via MCD

Description

Compute the Minimum Covariance Determinant (MCD) estimator, a robust multivariate location
and scale estimate with a high breakdown point, via the ‘Fast MCD’ or ‘Deterministic MCD’
(“DetMcd”) algorithm.

Usage

covMcd(x, cor = FALSE, raw.only = FALSE,
alpha =, nsamp =, nmini =, kmini =,
scalefn =, maxcsteps =,
initHsets = NULL, save.hsets = FALSE, names = TRUE,
seed =, tolSolve =, trace =,
use.correction =, wgtFUN =, control = rrcov.control())

Arguments

x a matrix or data frame.

cor should the returned result include a correlation matrix? Default is cor = FALSE.

raw.only should only the “raw” estimate be returned, i.e., no (re)weighting step be per-
formed; default is false.

alpha numeric parameter controlling the size of the subsets over which the determinant
is minimized; roughly alpha*n, (see ‘Details’ below) observations are used for
computing the determinant. Allowed values are between 0.5 and 1 and the de-
fault is 0.5.
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nsamp number of subsets used for initial estimates or "best", "exact", or "deterministic".
Default is nsamp = 500. For nsamp = "best" exhaustive enumeration is done, as
long as the number of trials does not exceed 100’000 (= nLarge). For "exact",
exhaustive enumeration will be attempted however many samples are needed.
In this case a warning message may be displayed saying that the computation
can take a very long time.

For "deterministic", the deterministic MCD is computed; as proposed by
Hubert et al. (2012) it starts from the h most central observations of six (deter-
ministic) estimators.

nmini, kmini for n ≥ 2 × n0, n0 := nmini, the algorithm splits the data into maximally
kmini (by default 5) subsets, of size approximately, but at least nmini. When
nmini*kmini < n, the initial search uses only a subsample of size nmini*kmini.
The original algorithm had nmini = 300 and kmini = 5 hard coded.

scalefn for the deterministic MCD: function to compute a robust scale estimate or
character string specifying a rule determining such a function. The default, cur-
rently "hrv2012", uses the recommendation of Hubert, Rousseeuw and Ver-
donck (2012) who recommend Qn for n < 1000 and scaleTau2 for larger n.
Alternatively, scalefn = "v2014", uses that rule with cutoff n = 5000.

maxcsteps maximal number of concentration steps in the deterministic MCD; should not
be reached.

initHsets NULL or aKxh integer matrix of initial subsets of observations of size h (spec-
ified by the indices in 1:n).

save.hsets (for deterministic MCD) logical indicating if the initial subsets should be re-
turned as initHsets.

names logical; if true (as by default), several parts of the result have a names or dimnames
respectively, derived from data matrix x.

seed initial seed for random generator, like .Random.seed, see rrcov.control.

tolSolve numeric tolerance to be used for inversion (solve) of the covariance matrix in
mahalanobis.

trace logical (or integer) indicating if intermediate results should be printed; defaults
to FALSE; values ≥ 2 also produce print from the internal (Fortran) code.

use.correction whether to use finite sample correction factors; defaults to TRUE.

wgtFUN a character string or function, specifying how the weights for the reweight-
ing step should be computed. Up to April 2013, the only option has been the
original proposal in (1999), now specified by wgtFUN = "01.original" (or via
control). Since robustbase version 0.92-3, Dec.2014, other predefined string
options are available, though experimental, see the experimental .wgtFUN.covMcd
object.

control a list with estimation options - this includes those above provided in the function
specification, see rrcov.control for the defaults. If control is supplied, the
parameters from it will be used. If parameters are passed also in the invocation
statement, they will override the corresponding elements of the control object.
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Details

The minimum covariance determinant estimator of location and scatter implemented in covMcd()
is similar to R function cov.mcd() in MASS. The MCD method looks for the h(> n/2) (h =
h(α, n, p) = h.alpha.n(alpha,n,p)) observations (out of n) whose classical covariance matrix
has the lowest possible determinant.

The raw MCD estimate of location is then the average of these h points, whereas the raw MCD
estimate of scatter is their covariance matrix, multiplied by a consistency factor (.MCDcons(p,
h/n)) and (if use.correction is true) a finite sample correction factor (.MCDcnp2(p, n, alpha)),
to make it consistent at the normal model and unbiased at small samples. Both rescaling factors
(consistency and finite sample) are returned in the length-2 vector raw.cnp2.

The implementation of covMcd uses the Fast MCD algorithm of Rousseeuw and Van Driessen
(1999) to approximate the minimum covariance determinant estimator.

Based on these raw MCD estimates, (unless argument raw.only is true), a reweighting step is per-
formed, i.e., V <- cov.wt(x,w), where w are weights determined by “outlyingness” with respect to
the scaled raw MCD. Again, a consistency factor and (if use.correction is true) a finite sample
correction factor (.MCDcnp2.rew(p, n, alpha)) are applied. The reweighted covariance is typi-
cally considerably more efficient than the raw one, see Pison et al. (2002).

The two rescaling factors for the reweighted estimates are returned in cnp2. Details for the compu-
tation of the finite sample correction factors can be found in Pison et al. (2002).

Value

An object of class "mcd" which is basically a list with components

center the final estimate of location.

cov the final estimate of scatter.

cor the (final) estimate of the correlation matrix (only if cor = TRUE).

crit the value of the criterion, i.e., the logarithm of the determinant. Previous to
Nov.2014, it contained the determinant itself which can under- or overflow rela-
tively easily.

best the best subset found and used for computing the raw estimates, with length(best)
== quan = h.alpha.n(alpha,n,p).

mah mahalanobis distances of the observations using the final estimate of the location
and scatter.

mcd.wt weights of the observations using the final estimate of the location and scatter.

cnp2 a vector of length two containing the consistency correction factor and the finite
sample correction factor of the final estimate of the covariance matrix.

raw.center the raw (not reweighted) estimate of location.

raw.cov the raw (not reweighted) estimate of scatter.

raw.mah mahalanobis distances of the observations based on the raw estimate of the lo-
cation and scatter.

raw.weights weights of the observations based on the raw estimate of the location and scatter.

raw.cnp2 a vector of length two containing the consistency correction factor and the finite
sample correction factor of the raw estimate of the covariance matrix.

https://CRAN.R-project.org/package=MASS
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X the input data as numeric matrix, without NAs.

n.obs total number of observations.

alpha the size of the subsets over which the determinant is minimized (the default is
(n+ p+ 1)/2).

quan the number of observations, h, on which the MCD is based. If quan equals
n.obs, the MCD is the classical covariance matrix.

method character string naming the method (Minimum Covariance Determinant), start-
ing with "Deterministic" when nsamp="deterministic".

iBest (for the deterministic MCD) contains indices from 1:6 denoting which of the
(six) initial subsets lead to the best set found.

n.csteps (for the deterministic MCD) for each of the initial subsets, the number of C-steps
executed till convergence.

call the call used (see match.call).

Author(s)

Valentin Todorov <valentin.todorov@chello.at>, based on work written for S-plus by Peter
Rousseeuw and Katrien van Driessen from University of Antwerp.

Visibility of (formerly internal) tuning parameters, notably wgtFUN(): Martin Maechler

References

Rousseeuw, P. J. and Leroy, A. M. (1987) Robust Regression and Outlier Detection. Wiley.

Rousseeuw, P. J. and van Driessen, K. (1999) A fast algorithm for the minimum covariance deter-
minant estimator. Technometrics 41, 212–223.

Pison, G., Van Aelst, S., and Willems, G. (2002) Small Sample Corrections for LTS and MCD,
Metrika 55, 111–123.

Hubert, M., Rousseeuw, P. J. and Verdonck, T. (2012) A deterministic algorithm for robust location
and scatter. Journal of Computational and Graphical Statistics 21, 618–637.

See Also

cov.mcd from package MASS; covOGK as cheaper alternative for larger dimensions.

BACON and covNNC, from package robustX;

Examples

data(hbk)
hbk.x <- data.matrix(hbk[, 1:3])
set.seed(17)
(cH <- covMcd(hbk.x))
cH0 <- covMcd(hbk.x, nsamp = "deterministic")
with(cH0, stopifnot(quan == 39,

iBest == c(1:4,6), # 5 out of 6 gave the same
identical(raw.weights, mcd.wt),
identical(which(mcd.wt == 0), 1:14), all.equal(crit, -1.045500594135)))

https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=robustX
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## the following three statements are equivalent
c1 <- covMcd(hbk.x, alpha = 0.75)
c2 <- covMcd(hbk.x, control = rrcov.control(alpha = 0.75))
## direct specification overrides control one:
c3 <- covMcd(hbk.x, alpha = 0.75,

control = rrcov.control(alpha=0.95))
c1

## Martin's smooth reweighting:

## List of experimental pre-specified wgtFUN() creators:
## Cutoffs may depend on (n, p, control$beta) :
str(.wgtFUN.covMcd)

cMM <- covMcd(hbk.x, wgtFUN = "sm1.adaptive")

ina <- which(names(cH) == "call")
all.equal(cMM[-ina], cH[-ina]) # *some* differences, not huge (same 'best'):
stopifnot(all.equal(cMM[-ina], cH[-ina], tol = 0.2))

covOGK Orthogonalized Gnanadesikan-Kettenring (OGK) Covariance Matrix
Estimation

Description

Computes the orthogonalized pairwise covariance matrix estimate described in in Maronna and
Zamar (2002). The pairwise proposal goes back to Gnanadesikan and Kettenring (1972).

Usage

covOGK(X, n.iter = 2, sigmamu, rcov = covGK, weight.fn = hard.rejection,
keep.data = FALSE, ...)

covGK (x, y, scalefn = scaleTau2, ...)
s_mad(x, mu.too = FALSE, na.rm = FALSE)
s_IQR(x, mu.too = FALSE, na.rm = FALSE)

Arguments

X data in something that can be coerced into a numeric matrix.
n.iter number of orthogonalization iterations. Usually 1 or 2; values greater than 2 are

unlikely to have any significant effect on the estimate (other than increasing the
computing time).

sigmamu, scalefn
a function that computes univariate robust location and scale estimates. By de-
fault it should return a single numeric value containing the robust scale (stan-
dard deviation) estimate. When mu.too is true, sigmamu() should return a nu-
meric vector of length 2 containing robust location and scale estimates. See
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scaleTau2, s_Qn, s_Sn, s_mad or s_IQR for examples to be used as sigmamu
argument.

rcov function that computes a robust covariance estimate between two vectors. The
default, Gnanadesikan-Kettenring’s covGK, is simply (s2(X + Y ) − s2(X −
Y ))/4 where s() is the scale estimate sigmamu().

weight.fn a function of the robust distances and the number of variables p to compute the
weights used in the reweighting step.

keep.data logical indicating if the (untransformed) data matrix X should be kept as part of
the result.

... additional arguments; for covOGK to be passed to sigmamu() and weight.fn();
for covGK passed to scalefn.

x, y numeric vectors of the same length, the covariance of which is sought in covGK
(or the scale, in s_mad or s_IQR).

mu.too logical indicating if both location and scale should be returned or just the scale
(when mu.too=FALSE as by default).

na.rm if TRUE then NA values are stripped from x before computation takes place.

Details

Typical default values for the function arguments sigmamu, rcov, and weight.fn, are available as
well, see the Examples below, but their names and calling sequences are still subject to discussion
and may be changed in the future.

The current default, weight.fn = hard.rejection corresponds to the proposition in the litterature,
but Martin Maechler strongly believes that the hard threshold currently in use is too arbitrary, and
further that soft thresholding should be used instead, anyway.

Value

covOGK() currently returns a list with components

center robust location: numeric vector of length p.

cov robust covariance matrix estimate: p× p matrix.

wcenter, wcov re-weighted versions of center and cov.

weights the robustness weights used.

distances the mahalanobis distances computed using center and cov.

. . . . . .
but note that this might be radically changed to returning an S4 classed object!

covGK() is a trivial 1-line function returning the covariance estimate

ĉ(x, y) =
(
σ̂(x+ y)2 − σ̂(x− y)2

)
/4,

where σ̂(u) is the scale estimate of u specified by scalefn.

s_mad(), and s_IQR() return the scale estimates mad or IQR respectively, where the s_* functions
return a length-2 vector (mu, sig) when mu.too = TRUE, see also scaleTau2.
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Author(s)

Kjell Konis <konis@stats.ox.ac.uk>, with modifications by Martin Maechler.

References

Maronna, R.A. and Zamar, R.H. (2002) Robust estimates of location and dispersion of high-dimensional
datasets; Technometrics 44(4), 307–317.

Gnanadesikan, R. and John R. Kettenring (1972) Robust estimates, residuals, and outlier detection
with multiresponse data. Biometrics 28, 81–124.

See Also

scaleTau2, covMcd, cov.rob.

Examples

data(hbk)
hbk.x <- data.matrix(hbk[, 1:3])

cO1 <- covOGK(hbk.x, sigmamu = scaleTau2)
cO2 <- covOGK(hbk.x, sigmamu = s_Qn)
cO3 <- covOGK(hbk.x, sigmamu = s_Sn)
cO4 <- covOGK(hbk.x, sigmamu = s_mad)
cO5 <- covOGK(hbk.x, sigmamu = s_IQR)

data(toxicity)
cO1tox <- covOGK(toxicity, sigmamu = scaleTau2)
cO2tox <- covOGK(toxicity, sigmamu = s_Qn)

## nice formatting of correlation matrices:
as.dist(round(cov2cor(cO1tox$cov), 2))
as.dist(round(cov2cor(cO2tox$cov), 2))

## "graphical"
symnum(cov2cor(cO1tox$cov))
symnum(cov2cor(cO2tox$cov), legend=FALSE)

CrohnD Crohn’s Disease Adverse Events Data

Description

Data set issued from a study of the adverse events of a drug on 117 patients affected by Crohn’s
disease (a chronic inflammatory disease of the intestines).

Usage

data(CrohnD, package="robustbase")
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Format

A data frame with 117 observations on the following 9 variables.

ID the numeric patient IDs

nrAdvE the number of adverse events

BMI Body MASS Index, i.e., weight[kg]/(height[m])2.

height in cm

country a factor with levels 0 and 1

sex the person’s gender, a binary factor with levels M F

age in years, a numeric vector

weight in kilograms, a numeric vector

treat how CD was treated: a factor with levels 0, 1 and 2, meaning placebo, drug 1 and drug 2.

Source

form the authors of the reference, with permission by the original data collecting agency.

References

Serigne N. Lô and Elvezio Ronchetti (2006). Robust Second Order Accurate Inference for Gener-
alized Linear Models. Technical report, University of Geneva, Switzerland.

Examples

data(CrohnD)
str(CrohnD)
with(CrohnD, ftable(table(sex,country, treat)))

cushny Cushny and Peebles Prolongation of Sleep Data

Description

The original data set was bivariate and recorded for ten subjects the prolongation of sleep caused
by two different drugs. These data were used by Student as the first illustration of the paired t-test
which only needs the differences of the two measurements. These differences are the values of
cushny.

Usage

data(cushny, package="robustbase")

Format

numeric vector, sorted increasingly:
0 0.8 1 1.2 1.3 1.3 1.4 1.8 2.4 4.6
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Source

Cushny, A.R. and Peebles, A.R. (1905) The action of optical isomers. II. Hyoscines. J. Physiol. 32,
501–510.

These data were used by Student(1908) as the first illustration of the paired t-test, see also sleep;
then cited by Fisher (1925) and thereforth copied in numerous books as an example of a normally
distributed sample, see, e.g., Anderson (1958).

References

Student (1908) The probable error of a mean. Biometrika 6, 1–25.

Fisher, R.A. (1925) Statistical Methods for Research Workers; Oliver & Boyd, Edinburgh.

Anderson, T.W. (1958) An Introduction to Multivariate Statistical Analysis; Wiley, N.Y.

Hampel, F., Ronchetti, E., Rousseeuw, P. and Stahel, W. (1986) Robust Statistics: The Approach
Based on Influence Functions; Wiley, N.Y.

Examples

data(cushny)

plot(cushny, rep(0, 10), pch = 3, cex = 3,
ylab = "", yaxt = "n")

plot(jitter(cushny), rep(0, 10), pch = 3, cex = 2,
main = "'cushny' data (n= 10)", ylab = "", yaxt = "n")

abline(h=0, col="gray", lty=3)
myPt <- function(m, lwd = 2, ..., e = 1.5*par("cxy")[2])

segments(m, +e, m, -e, lwd = lwd, ...)
myPt( mean(cushny), col = "pink3")
myPt(median(cushny), col = "light blue")
legend("topright", c("mean", "median"), lwd = 2,

col = c("pink3", "light blue"), inset = .01)

## The 'sleep' data from the standard 'datasets' package:
d.sleep <- local({ gr <- with(datasets::sleep, split(extra, group))

gr[[2]] - gr[[1]] })
stopifnot(all.equal(cushny,

sort(d.sleep), tolerance=1e-15))

delivery Delivery Time Data

Description

Delivery Time Data, from Montgomery and Peck (1982). The aim is to explain the time required to
service a vending machine (Y) by means of the number of products stocked (X1) and the distance
walked by the route driver (X2).
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Usage

data(delivery, package="robustbase")

Format

A data frame with 25 observations on the following 3 variables.

n.prod Number of Products

distance Distance

delTime Delivery time

Source

Montgomery and Peck (1982, p.116)

References

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, page
155, table 23.

Examples

data(delivery)
summary(lm.deli <- lm(delTime ~ ., data = delivery))

delivery.x <- as.matrix(delivery[, 1:2])
c_deli <- covMcd(delivery.x)
c_deli

education Education Expenditure Data

Description

Education Expenditure Data, from Chatterjee and Price (1977, p.108). This data set, represent-
ing the education expenditure variables in the 50 US states, providing an interesting example of
heteroscedacity.

Usage

data(education, package="robustbase")
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Format

A data frame with 50 observations on the following 6 variables.

State State

Region Region (1=Northeastern, 2=North central, 3=Southern, 4=Western)

X1 Number of residents per thousand residing in urban areas in 1970

X2 Per capita personal income in 1973

X3 Number of residents per thousand under 18 years of age in 1974

Y Per capita expenditure on public education in a state, projected for 1975

Source

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, p.110,
table 16.

Examples

data(education)
education.x <- data.matrix(education[, 3:5])
summary(lm.education <- lm(Y ~ Region + X1+X2+X3, data=education))

## See example(lmrob.M.S) # for how robust regression is used

epilepsy Epilepsy Attacks Data Set

Description

Data from a clinical trial of 59 patients with epilepsy (Breslow, 1996) in order to illustrate diagnostic
techniques in Poisson regression.

Usage

data(epilepsy, package="robustbase")

Format

A data frame with 59 observations on the following 11 variables.

ID Patient identification number

Y1 Number of epilepsy attacks patients have during the first follow-up period

Y2 Number of epilepsy attacks patients have during the second follow-up period

Y3 Number of epilepsy attacks patients have during the third follow-up period

Y4 Number of epilepsy attacks patients have during the forth follow-up period

Base Number of epileptic attacks recorded during 8 week period prior to randomization
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Age Age of the patients

Trt a factor with levels placebo progabide indicating whether the anti-epilepsy drug Progabide
has been applied or not

Ysum Total number of epilepsy attacks patients have during the four follow-up periods

Age10 Age of the patients devided by 10

Base4 Variable Base devided by 4

Details

Thall and Vail reported data from a clinical trial of 59 patients with epilepsy, 31 of whom were
randomized to receive the anti-epilepsy drug Progabide and 28 of whom received a placebo. Base-
line data consisted of the patient’s age and the number of epileptic seizures recorded during 8 week
period prior to randomization. The response consisted of counts of seizures occuring during the
four consecutive follow-up periods of two weeks each.

Source

Thall, P.F. and Vail S.C. (1990) Some covariance models for longitudinal count data with overdis-
persion. Biometrics 46, 657–671.

References

Diggle, P.J., Liang, K.Y., and Zeger, S.L. (1994) Analysis of Longitudinal Data; Clarendon Press.

Breslow N. E. (1996) Generalized linear models: Checking assumptions and strengthening conclu-
sions. Statistica Applicata 8, 23–41.

Examples

data(epilepsy)
str(epilepsy)
pairs(epilepsy[,c("Ysum","Base4","Trt","Age10")])

Efit1 <- glm(Ysum ~ Age10 + Base4*Trt, family=poisson, data=epilepsy)
summary(Efit1)

## Robust Fit :
Efit2 <- glmrob(Ysum ~ Age10 + Base4*Trt, family=poisson, data=epilepsy,

method = "Mqle",
tcc=1.2, maxit=100)

summary(Efit2)
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estimethod Extract the Estimation Method ’Estimethod’ from a Fitted Model

Description

Extract the estimation method as a character string from a fitted model.

Usage

estimethod(object, ...)

Arguments

object a fitted model.

... additional, optional arguments. (None are used in our methods)

Details

This is a (S3) generic function for which we provide methods, currently for nlrob only.

Value

a character string, the estimation method used.

See Also

nlrob, and nlrob.MM, notably for examples.

exAM Example Data of Antille and May - for Simple Regression

Description

This is an artificial data set, cleverly construced and used by Antille and May to demonstrate ‘prob-
lems’ with LMS and LTS.

Usage

data(exAM, package="robustbase")

Format

A data frame with 12 observations on 2 variables, x and y.
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Details

Because the points are not in general position, both LMS and LTS typically fail; however, e.g.,
rlm(*, method="MM") “works”.

Source

Antille, G. and El May, H. (1992) The use of slices in the LMS and the method of density slices:
Foundation and comparison.
In Yadolah Dodge and Joe Whittaker, editors, COMPSTAT: Proc. 10th Symp. Computat. Statist.,
Neuchatel, 1, 441–445; Physica-Verlag.

Examples

data(exAM)
plot(exAM)
summary(ls <- lm(y ~ x, data=exAM))
abline(ls)

foodstamp Food Stamp Program Participation

Description

This data consists of 150 randomly selected persons from a survey with information on over 2000
elderly US citizens, where the response, indicates participation in the U.S. Food Stamp Program.

Usage

data(foodstamp, package="robustbase")

Format

A data frame with 150 observations on the following 4 variables.

participation participation in U.S. Food Stamp Program; yes = 1, no = 0

tenancy tenancy, indicating home ownership; yes = 1, no = 0

suppl.income supplemental income, indicating whether some form of supplemental security in-
come is received; yes = 1, no = 0

income monthly income (in US dollars)

Source

Data description and first analysis: Stefanski et al.(1986) who indicate Rizek(1978) as original
source of the larger study.

Electronic version from CRAN package catdata.

https://CRAN.R-project.org/package=catdata
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References

Rizek, R. L. (1978) The 1977-78 Nationwide Food Consumption Survey. Family Econ. Rev., Fall,
3–7.

Stefanski, L. A., Carroll, R. J. and Ruppert, D. (1986) Optimally bounded score functions for gen-
eralized linear models with applications to logistic regression. Biometrika 73, 413–424.

Künsch, H. R., Stefanski, L. A., Carroll, R. J. (1989) Conditionally unbiased bounded-influence
estimation in general regression models, with applications to generalized linear models. J. American
Statistical Association 84, 460–466.

Examples

data(foodstamp)

(T123 <- xtabs(~ participation+ tenancy+ suppl.income, data=foodstamp))
summary(T123) ## ==> the binary var's are clearly not independent

foodSt <- within(foodstamp, {
logInc <- log(1 + income)
rm(income)

})

m1 <- glm(participation ~ ., family=binomial, data=foodSt)
summary(m1)
rm1 <- glmrob(participation ~ ., family=binomial, data=foodSt)
summary(rm1)
## Now use robust weights.on.x :
rm2 <- glmrob(participation ~ ., family=binomial, data=foodSt,

weights.on.x = "robCov")
summary(rm2)## aha, now the weights are different:
which( weights(rm2, type="robust") < 0.5)

fullRank Remove Columns (or Rows) From a Matrix to Make It Full Rank

Description

From the QR decomposition with pivoting, (qr(x, tol) if n ≥ p), if the matrix is not of full rank,
the corresponding columns (n ≥ p) or rows (n < p) are omitted to form a full rank matrix.

Usage

fullRank(x, tol = 1e-7, qrx = qr(x, tol=tol))

Arguments

x a numeric matrix of dimension n× p, or a similar object for which qr() works.

tol tolerance for determining rank (deficiency). Currently is simply passed to qr.

qrx optionally may be used to pass a qr(x, ..); only used when p <= n.
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Value

a version of the matrix x, with less columns or rows if x’s rank was smaller than min(n,p).

If x is of full rank, it is returned unchanged.

Note

This is useful for robustness algorithms that rely onX matrices of full rank, e.g., adjOutlyingness.

This also works for numeric data frames and whenever qr() works correctly.

Author(s)

Martin Maechler

See Also

qr; for more sophisticated rank determination, rankMatrix from package Matrix.

Examples

stopifnot(identical(fullRank(wood), wood))

## More sophisticated and delicate
dim(T <- tcrossprod(data.matrix(toxicity))) # 38 x 38
dim(T. <- fullRank(T)) # 38 x 10
if(requireNamespace("Matrix")) {

rMmeths <- eval(formals(Matrix::rankMatrix)$method)
rT. <- sapply(rMmeths, function(.m.) Matrix::rankMatrix(T., method = .m.))
print(rT.) # "qr" (= "qrLinpack"): 13, others rather 10

}
dim(T.2 <- fullRank(T, tol = 1e-15))# 38 x 18
dim(T.3 <- fullRank(T, tol = 1e-12))# 38 x 13
dim(T.3 <- fullRank(T, tol = 1e-10))# 38 x 13
dim(T.3 <- fullRank(T, tol = 1e-8 ))# 38 x 12
dim(T.) # default from above 38 x 10
dim(T.3 <- fullRank(T, tol = 1e-5 ))# 38 x 10 -- still

plot(svd(T, 0,0)$d, log="y", main = "singular values of T", yaxt="n")
axis(2, at=10^(-14:5), las=1)
## pretty clearly indicates that rank 10 is "correct" here.

functionX-class Class "functionX" of Psi-like Vectorized Functions

Description

The class "functionX" of vectorized functions of one argument x and typically further tuning
parameters.

https://CRAN.R-project.org/package=Matrix
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Objects from the Class

Objects can be created by calls of the form new("functionX", ...).

Slots

.Data: Directly extends class "function".

Extends

Class "function", from data part. Class "OptionalFunction", by class "function". Class
"PossibleMethod", by class "function".

Methods

No methods defined with class "functionX" in the signature.

Author(s)

Martin Maechler

See Also

psiFunc(), and class descriptions of functionXal for functionals of "functionX", and psi_func
which has several functionX slots.

functionXal-class Class "functionXal" of Functionals (of Psi-like functions)

Description

The class "functionXal" is a class of functionals (typically integrals) typically of functionX
functions.

Since the functionX functions typically also depend on tuning parameters, objects of this class
("functionXal") are functions of these tuning parameters.

Slots

.Data: Directly extends class "function".

Extends

Class "function", from data part. Class "OptionalFunction", by class "function". Class
"PossibleMethod", by class "function".

See Also

psiFunc() and the class definitions of functionX and psi_func which has several functionXal
slots.
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glmrob Robust Fitting of Generalized Linear Models

Description

glmrob is used to fit generalized linear models by robust methods. The models are specified
by giving a symbolic description of the linear predictor and a description of the error distribu-
tion. Currently, robust methods are implemented for family = binomial, = poisson, = Gamma and
= gaussian.

Usage

glmrob(formula, family, data, weights, subset, na.action,
start = NULL, offset, method = c("Mqle", "BY", "WBY", "MT"),
weights.on.x = c("none", "hat", "robCov", "covMcd"), control = NULL,
model = TRUE, x = FALSE, y = TRUE, contrasts = NULL, trace.lev = 0, ...)

Arguments

formula a formula, i.e., a symbolic description of the model to be fit (cf. glm or lm).

family a description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function
or the result of a call to a family function. (See family for details of family
functions.)

data an optional data frame containing the variables in the model. If not found in
data, the variables are taken from environment(formula), typically the envi-
ronment from which glmrob is called.

weights an optional vector of weights to be used in the fitting process.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting in options. The “factory-fresh” default
is na.omit.

start starting values for the parameters in the linear predictor. Note that specifying
start has somewhat different meaning for the different methods. Notably, for
"MT", this skips the expensive computation of initial estimates via sub samples,
but needs to be robust itself.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting.

method a character string specifying the robust fitting method. The details of method
specification are given below.

weights.on.x a character string (can be abbreviated), a function or list (see below), or
a numeric vector of length n, specifying how points (potential outliers) in x-
space are downweighted. If "hat", weights on the design of the form

√
1− hii
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are used, where hii are the diagonal elements of the hat matrix. If "robCov",
weights based on the robust Mahalanobis distance of the design matrix (intercept
excluded) are used where the covariance matrix and the centre is estimated by
cov.rob from the package MASS.
Similarly, if "covMcd", robust weights are computed using covMcd. The default
is "none" as suggested by the original authors.
If weights.on.x is a function, it is called with arguments (X, intercept)
and must return an n-vector of non-negative weights.
If it is a list, it must be of length one, and as element contain a function much
like covMcd() or cov.rob() (package MASS), which computes multivariate
location and “scatter” of a data matrix X.

control a list of parameters for controlling the fitting process. See the documentation for
glmrobMqle.control for details.

model a logical value indicating whether model frame should be included as a compo-
nent of the returned value.

x, y logical values indicating whether the response vector and model matrix used in
the fitting process should be returned as components of the returned value.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

trace.lev logical (or integer) indicating if intermediate results should be printed; defaults
to 0 (the same as FALSE).

... arguments passed to glmrobMqle.control when control is NULL (as per de-
fault).

Details

method="model.frame" returns the model.frame(), the same as glm().
method="Mqle" fits a generalized linear model using Mallows or Huber type robust estimators, as
described in Cantoni and Ronchetti (2001) and Cantoni and Ronchetti (2006). In contrast to the
implementation described in Cantoni (2004), the pure influence algorithm is implemented.
method="WBY" and method="BY", available for logistic regression (family = binomial) only, call
BYlogreg(*, initwml= . ) for the (weighted) Bianco-Yohai estimator, where initwml is true for
"WBY", and false for "BY".
method="MT", currently only implemented for family = poisson, computes an “[M]-Estimator
based on [T]ransformation”, by Valdora and Yohai (2013), via (hidden internal) glmrobMT(); as
that uses sample(), from R version 3.6.0 it depends on RNGkind(*, sample.kind). Exact repro-
ducibility of results from R versions 3.5.3 and earlier, requires setting RNGversion("3.5.0").

weights.on.x= "robCov" makes sense if all explanatory variables are continuous.

In the cases,where weights.on.x is "covMcd" or "robCov", or list with a “robCov” function,
the mahalanobis distances D^2 are computed with respect to the covariance (location and scatter)
estimate, and the weights are 1/sqrt(1+ pmax.int(0, 8*(D2 - p)/sqrt(2*p))), where D2 = D^2
and p = ncol(X).

Value

glmrob returns an object of class "glmrob" and is also inheriting from glm.
The summary method, see summary.glmrob, can be used to obtain or print a summary of the results.

https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=MASS
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The generic accessor functions coefficients, effects, fitted.values and residuals (see
residuals.glmrob) can be used to extract various useful features of the value returned by glmrob().

An object of class "glmrob" is a list with at least the following components:

coefficients a named vector of coefficients

residuals the working residuals, that is the (robustly “huberized”) residuals in the final
iteration of the IWLS fit.

fitted.values the fitted mean values, obtained by transforming the linear predictors by the
inverse of the link function.

w.r robustness weights for each observations; i.e., residuals × w.r equals the psi-
function of the Preason’s residuals.

w.x weights used to down-weight observations based on the position of the observa-
tion in the design space.

dispersion robust estimation of dispersion paramter if appropriate

cov the estimated asymptotic covariance matrix of the estimated coefficients.

tcc the tuning constant c in Huber’s psi-function.

family the family object used.
linear.predictors

the linear fit on link scale.

deviance NULL; Exists because of compatipility reasons.

iter the number of iterations used by the influence algorithm.

converged logical. Was the IWLS algorithm judged to have converged?

call the matched call.

formula the formula supplied.

terms the terms object used.

data the data argument.

offset the offset vector used.

control the value of the control argument used.

method the name of the robust fitter function used.

contrasts (where relevant) the contrasts used.

xlevels (where relevant) a record of the levels of the factors used in fitting.

Author(s)

Andreas Ruckstuhl ("Mqle") and Martin Maechler

References

Eva Cantoni and Elvezio Ronchetti (2001) Robust Inference for Generalized Linear Models. JASA
96 (455), 1022–1030.

Eva Cantoni (2004) Analysis of Robust Quasi-deviances for Generalized Linear Models. Journal of
Statistical Software, 10, https://www.jstatsoft.org/article/view/v010i04 Eva Cantoni and

https://www.jstatsoft.org/article/view/v010i04
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Elvezio Ronchetti (2006) A robust approach for skewed and heavy-tailed outcomes in the analysis
of health care expenditures. Journal of Health Economics 25, 198–213.

S. Heritier, E. Cantoni, S. Copt, M.-P. Victoria-Feser (2009) Robust Methods in Biostatistics. Wiley
Series in Probability and Statistics.

Marina Valdora and Víctor J. Yohai (2013) Robust estimators for Generalized Linear Models. In
progress.

See Also

predict.glmrob for prediction; glmrobMqle.control

Examples

## Binomial response --------------
data(carrots)

Cfit1 <- glm(cbind(success, total-success) ~ logdose + block,
data = carrots, family = binomial)

summary(Cfit1)

Rfit1 <- glmrob(cbind(success, total-success) ~ logdose + block,
family = binomial, data = carrots, method= "Mqle",
control= glmrobMqle.control(tcc=1.2))

summary(Rfit1)

Rfit2 <- glmrob(success/total ~ logdose + block, weights = total,
family = binomial, data = carrots, method= "Mqle",
control= glmrobMqle.control(tcc=1.2))

coef(Rfit2) ## The same as Rfit1

## Binary response --------------
data(vaso)

Vfit1 <- glm(Y ~ log(Volume) + log(Rate), family=binomial, data=vaso)
coef(Vfit1)

Vfit2 <- glmrob(Y ~ log(Volume) + log(Rate), family=binomial, data=vaso,
method="Mqle", control = glmrobMqle.control(tcc=3.5))

coef(Vfit2) # c = 3.5 ==> not much different from classical
## Note the problems with tcc <= 3 %% FIXME algorithm ???

Vfit3 <- glmrob(Y ~ log(Volume) + log(Rate), family=binomial, data=vaso,
method= "BY")

coef(Vfit3)## note that results differ much.
## That's not unreasonable however, see Kuensch et al.(1989), p.465

## Poisson response --------------
data(epilepsy)

Efit1 <- glm(Ysum ~ Age10 + Base4*Trt, family=poisson, data=epilepsy)
summary(Efit1)
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Efit2 <- glmrob(Ysum ~ Age10 + Base4*Trt, family = poisson,
data = epilepsy, method= "Mqle",
control = glmrobMqle.control(tcc= 1.2))

summary(Efit2)

## 'x' weighting:
(Efit3 <- glmrob(Ysum ~ Age10 + Base4*Trt, family = poisson,

data = epilepsy, method= "Mqle", weights.on.x = "hat",
control = glmrobMqle.control(tcc= 1.2)))

try( # gives singular cov matrix: 'Trt' is binary factor -->
# affine equivariance and subsampling are problematic

Efit4 <- glmrob(Ysum ~ Age10 + Base4*Trt, family = poisson,
data = epilepsy, method= "Mqle", weights.on.x = "covMcd",
control = glmrobMqle.control(tcc=1.2, maxit=100))

)

##--> See example(possumDiv) for another Poisson-regression

### -------- Gamma family -- data from example(glm) ---

clotting <- data.frame(
u = c(5,10,15,20,30,40,60,80,100),

lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

summary(cl <- glm (lot1 ~ log(u), data=clotting, family=Gamma))
summary(ro <- glmrob(lot1 ~ log(u), data=clotting, family=Gamma))

clotM5.high <- within(clotting, { lot1[5] <- 60 })
op <- par(mfrow=2:1, mgp = c(1.6, 0.8, 0), mar = c(3,3:1))
plot( lot1 ~ log(u), data=clotM5.high)
plot(1/lot1 ~ log(u), data=clotM5.high)
par(op)
## Obviously, there the first observation is an outlier with respect to both
## representations!

cl5.high <- glm (lot1 ~ log(u), data=clotM5.high, family=Gamma)
ro5.high <- glmrob(lot1 ~ log(u), data=clotM5.high, family=Gamma)
with(ro5.high, cbind(w.x, w.r))## the 5th obs. is downweighted heavily!

plot(1/lot1 ~ log(u), data=clotM5.high)
abline(cl5.high, lty=2, col="red")
abline(ro5.high, lwd=2, col="blue") ## result is ok (but not "perfect")

glmrob..control Controlling Robust GLM Fitting by Different Methods
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Description

These are auxiliary functions as user interface for glmrob fitting when the different methods,
"Mqle", "BY", or "MT" are used. Typically only used when calling glmrob.

Usage

glmrobMqle.control(acc = 1e-04, test.acc = "coef", maxit = 50, tcc = 1.345)
glmrobBY.control (maxit = 1000, const = 0.5, maxhalf = 10)
glmrobMT.control (cw = 2.1, nsubm = 500, acc = 1e-06, maxit = 200)

Arguments

acc positive convergence tolerance; the iterations converge when ???

test.acc Only "coef" is currently implemented

maxit integer giving the maximum number of iterations.

tcc tuning constant c for Huber’s psi-function

const for "BY", the normalizing constant ..

maxhalf for "BY"; the number of halving steps when the gradient itself no longer im-
proves. We have seen examples when increasing maxhalf was of relevance.

cw tuning constant c for Tukey’s biweight psi-function

nsubm the number of subsamples to take for finding an initial estimate for method =
"MT".

Value

A list with the arguments as components.

Author(s)

Andreas Ruckstuhl and Martin Maechler

See Also

glmrob

Examples

str(glmrobMqle.control())
str(glmrobBY.control())
str(glmrobMT.control())
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h.alpha.n Compute h, the subsample size for MCD and LTS

Description

Compute h(alpha) which is the size of the subsamples to be used for MCD and LTS. Given α =
alpha, n and p, h is an integer, h ≈ αn, where the exact formula also depends on p.

Forα = 1/2, h == floor(n+p+1)/2; for the general case, it’s simply n2 <- (n+p+1) %/% 2; floor(2*n2
- n + 2*(n-n2)*alpha).

Usage

h.alpha.n(alpha, n, p)

Arguments

alpha fraction, numeric (vector) in [0.5, 1], see, e.g., covMcd.

n integer (valued vector), the sample size.

p integer (valued vector), the dimension.

Value

numeric vector of h(α, n, p); when any of the arguments of length greater than one, the usual R
arithmetic (recycling) rules are used.

See Also

covMcd and ltsReg which are defined by h = h(α, n, p) and hence both use h.alpha.n.

Examples

n <- c(10:20,50,100)
p <- 5
## show the simple "alpha = 1/2" case:
cbind(n=n, h= h.alpha.n(1/2, n, p), n2p = floor((n+p+1)/2))

## alpha = 3/4 is recommended by some authors :
n <- c(15, 20, 25, 30, 50, 100)
cbind(n=n, h= h.alpha.n(3/4, n, p = 6))
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hbk Hawkins, Bradu, Kass’s Artificial Data

Description

Artificial Data Set generated by Hawkins, Bradu, and Kass (1984). The data set consists of 75
observations in four dimensions (one response and three explanatory variables). It provides a good
example of the masking effect. The first 14 observations are outliers, created in two groups: 1–10
and 11–14. Only observations 12, 13 and 14 appear as outliers when using classical methods, but
can be easily unmasked using robust distances computed by, e.g., MCD - covMcd().

Usage

data(hbk, package="robustbase")

Format

A data frame with 75 observations on 4 variables, where the last variable is the dependent one.

X1 x[,1]

X2 x[,2]

X3 x[,3]

Y y

Note

This data set is also available in package wle as artificial.

Source

Hawkins, D.M., Bradu, D., and Kass, G.V. (1984) Location of several outliers in multiple regression
data using elemental sets. Technometrics 26, 197–208.

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, p.94.

Examples

data(hbk)
plot(hbk)
summary(lm.hbk <- lm(Y ~ ., data = hbk))

hbk.x <- data.matrix(hbk[, 1:3])
(cHBK <- covMcd(hbk.x))

https://CRAN.R-project.org/package=wle
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heart Heart Catherization Data

Description

This data set was analyzed by Weisberg (1980) and Chambers et al. (1983). A catheter is passed
into a major vein or artery at the femoral region and moved into the heart. The proper length of the
introduced catheter has to be guessed by the physician. The aim of the data set is to describe the
relation between the catheter length and the patient’s height (X1) and weight (X2).

This data sets is used to demonstrate the effects caused by collinearity. The correlation between
height and weight is so high that either variable almost completely determines the other.

Usage

data(heart)

Format

A data frame with 12 observations on the following 3 variables.

height Patient’s height in inches

weight Patient’s weights in pounds

clength Y: Catheter Length (in centimeters)

Note

There are other heart datasets in other R packages, notably survival, hence considering using
package = "robustbase", see examples.

Source

Weisberg (1980)

Chambers et al. (1983)

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, p.103,
table 13.

Examples

data(heart, package="robustbase")
heart.x <- data.matrix(heart[, 1:2]) # the X-variables
plot(heart.x)
covMcd(heart.x)
summary( lm.heart <- lm(clength ~ . , data = heart))
summary(lts.heart <- ltsReg(clength ~ . , data = heart))

https://CRAN.R-project.org/package=survival
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huberize Huberization – Bringing Outliers In

Description

Huberization (named after Peter Huber’s M-estimation algorithm for location originally) replaces
outlying values in a sample x by their respective boundary: when xj < c1 it is replaced by c1
and when xj > c2 it is replaced by c2. Consequently, values inside the interval [c1, c2] remain
unchanged.

Here, cj = M ± c · s where s := s(x) is the robust scale estimate Qn(x) if that is positive, and by
default, M is the robust huber estimate of location µ (with tuning constant k).

In the degenerate case where Qn(x) == 0, trimmed means of abs(x - M) are tried as scale estimate
s, with decreasing trimming proportions specified by the decreasing trim vector.

Usage

huberize(x, M = huberM(x, k = k)$mu, c = k,
trim = (5:1)/16,
k = 1.5,
warn0 = getOption("verbose"), saveTrim = TRUE)

Arguments

x numeric vector which is to be huberized.

M a number; defaulting to huberM(x, k), the robust Huber M-estimator of loca-
tion.

c a positive number, the tuning constant for huberization of the sample x.

trim a decreasing vector of trimming proportions in [0, 0.5], only used to trim the
absolute deviations from M in case Qn(x) is zero.

k used if M is not specified as huberization center M, and so, by default is taken as
Huber’s M-estimate huberM(x, k).

warn0 logical indicating if a warning should be signalled in case Qn(x) is zero and
the trimmed means for all trimming proportions trim are zero as well.

saveTrim a logical indicating if the last tried trim[j] value should be stored if Qn(x)
was zero.

Details

• In regular cases, s = Qn(x) is positive and used to huberize values of x outside [M - c*s, M +
c*s].

• In degenerate cases where Qn(x) == 0, we search for an s > 0 by trying the trimmed mean
s := mean(abs(x-M), trim = trim[j]) with less and less trimming (as the trimming pro-
portions trim[] must decrease). If even the last, trim[length(trim)], leads to s = 0, a
warning is printed when warn0 is true.
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Value

a numeric vector as x; in case Qn(x) was zero and saveTrim is true, also containing the (last) trim
proportion used (to compute the scale s) as attribute "trim" (see attr(), attributes).

Note

For the use in mc() and similar cases where mainly numerical stabilization is necessary, a large
c = 1e12 will lead to no huberization, i.e., all y == x for y <- huberize(x, c) for typical non-
degenerate samples.

Author(s)

Martin Maechler

See Also

huberM and mc which is now stabilized by default via something like huberize(*, c=1e11).

Examples

## For non-degenerate data and large c, nothing is huberized,
## as there are *no* really extreme outliers :
set.seed(101)
x <- rnorm(1000)
stopifnot(all.equal(x, huberize(x, c=100)))
## OTOH, the "extremes" are shrunken towards the boundaries for smaller c:
xh <- huberize(x, c = 2)
table(x != xh)
## 45 out of a 1000:
table(xh[x != xh])# 26 on the left boundary -2.098 and 19 on the right = 2.081
## vizualization:
stripchart(x); text(0,1, "x {original}", pos=3); yh <- 0.9
stripchart(xh, at = yh, add=TRUE, col=2)
text(0, yh, "huberize(x, c=2)", col=2, pos=1)
arrows( x[x!=xh], 1,

xh[x!=xh], yh, length=1/8, col=adjustcolor("pink", 1/2))

huberM Safe (generalized) Huber M-Estimator of Location

Description

(Generalized) Huber M-estimator of location with MAD scale, being sensible also when the scale
is zero where huber() returns an error.
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Usage

huberM(x, k = 1.5, weights = NULL, tol = 1e-06,
mu = if(is.null(weights)) median(x) else wgt.himedian(x, weights),
s = if(is.null(weights)) mad(x, center=mu)

else wgt.himedian(abs(x - mu), weights),
se = FALSE,
warn0scale = getOption("verbose"))

Arguments

x numeric vector.

k positive factor; the algorithm winsorizes at k standard deviations.

weights numeric vector of non-negative weights of same length as x, or NULL.

tol convergence tolerance.

mu initial location estimator.

s scale estimator held constant through the iterations.

se logical indicating if the standard error should be computed and returned (as SE
component). Currently only available when weights is NULL.

warn0scale logical; if true, and s is 0 and length(x) > 1, this will be warned about.

Details

Note that currently, when non-NULL weights are specified, the default for initial location mu and
scale s is wgt.himedian, where strictly speaking a weighted “non-hi” median should be used for
consistency. Since s is not updated, the results slightly differ, see the examples below.

When se = TRUE, the standard error is computed using the τ correction factor but no finite sample
correction.

Value

list of location and scale parameters, and number of iterations used.

mu location estimate

s the s argument, typically the mad.

it the number of “Huber iterations” used.

Author(s)

Martin Maechler, building on the MASS code mentioned.

References

Huber, P. J. (1981) Robust Statistics. Wiley.

See Also

hubers (and huber) in package MASS; mad.

https://CRAN.R-project.org/package=MASS
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Examples

huberM(c(1:9, 1000))
mad (c(1:9, 1000))
mad (rep(9, 100))
huberM(rep(9, 100))

## When you have "binned" aka replicated observations:
set.seed(7)
x <- c(round(rnorm(1000),1), round(rnorm(50, m=10, sd = 10)))
t.x <- table(x) # -> unique values and multiplicities
x.uniq <- as.numeric(names(t.x)) ## == sort(unique(x))
x.mult <- unname(t.x)
str(Hx <- huberM(x.uniq, weights = x.mult), digits = 7)
str(Hx. <- huberM(x, s = Hx$s, se=TRUE), digits = 7) ## should be ~= Hx
stopifnot(all.equal(Hx[-4], Hx.[-4]))
str(Hx2 <- huberM(x, se=TRUE), digits = 7)## somewhat different, since 's' differs

## Confirm correctness of std.error :

system.time(
SS <- replicate(10000, vapply(huberM(rnorm(400), se=TRUE), as.double, 1.))
) # ~ 2.8 seconds (was 12.2 s)
rbind(mean(SS["SE",]), sd(SS["mu",]))# both ~ 0.0508
stopifnot(all.equal(mean(SS["SE",]),

sd ( SS["mu",]), tolerance= 0.002))

kootenay Waterflow Measurements of Kootenay River in Libby and Newgate

Description

The original data set is the waterflow in January of the Kootenay river, measured at two locations,
namely, Libby (Montana) and Newgate (British Columbia) for 13 consecutive years, 1931–1943.

The data set is of mostly interest because it has been used as example in innumerous didactical
situations about robust regression. To this end, one number (in observation 4) has been modified
from the original data from originally 44.9 to 15.7 (here).

Usage

data(kootenay, package="robustbase")

Format

A data frame with 13 observations on the following 2 variables.

Libby a numeric vector

Newgate a numeric vector



lactic 67

Details

The original (unmodified) version of the data is easily obtainable as kootenay0 from the examples;
other modified versions of the data sets are also used in different places, see the examples below.

Source

Original Data, p.58f of Ezekiel and Fox (1959), Methods of Correlation and Regression Analysis.
Wiley, N.Y.

References

Hampel, F., Ronchetti, E., Rousseeuw, P. and Stahel, W. (1986) Robust Statistics: The Approach
Based on Influence Functions; Wiley, N.Y.

Rousseeuw, P. J. and Leroy, A. M. (1987) Robust Regression & Outlier Detection, Wiley, N. Y.

Examples

data(kootenay)
plot(kootenay, main = "'kootenay' data")
points(kootenay[4,], col = 2, cex =2, pch = 3)

abline(lm (Newgate ~ Libby, data = kootenay), col = "pink")
abline(lmrob(Newgate ~ Libby, data = kootenay), col = "blue")

## The original version of Ezekiel & Fox:
kootenay0 <- kootenay
kootenay0[4, "Newgate"] <- 44.9
plot(kootenay0, main = "'kootenay0': the original data")
abline(lm (Newgate ~ Libby, data = kootenay0), col = "pink")
abline(lmrob(Newgate ~ Libby, data = kootenay0), col = "blue")

## The version with "milder" outlier -- Hampel et al., p.310
kootenay2 <- kootenay0
kootenay2[4, "Libby"] <- 20.0 # instead of 77.6
plot(kootenay2, main = "The 'kootenay2' data",

xlim = range(kootenay[,"Libby"]))
points(kootenay2[4,], col = 2, cex =2, pch = 3)
abline(lm (Newgate ~ Libby, data = kootenay2), col = "pink")
abline(lmrob(Newgate ~ Libby, data = kootenay2), col = "blue")

lactic Lactic Acid Concentration Measurement Data

Description

Data on the Calibration of an Instrument that Measures Lactic Acid Concentration in Blood, from
Afifi and Azen (1979) - comparing the true concentration X with the measured value Y.
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Usage

data(lactic, package="robustbase")

Format

A data frame with 20 observations on the following 2 variables.

X True Concentration

Y Instrument

Source

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, p.62,
table 10.

Examples

data(lactic)
summary(lm.lactic <- lm(Y ~., data=lactic))

lmc Left and Right Medcouple, Robust Measures of Tail Weight

Description

Compute the left and right ‘medcouple’, robust estimators of tail weight, in some sense robust
versions of the kurtosis, the very unrobust centralized 4th moment.

Usage

lmc(x, mx = median(x, na.rm=na.rm), na.rm = FALSE, doReflect = FALSE, ...)
rmc(x, mx = median(x, na.rm=na.rm), na.rm = FALSE, doReflect = FALSE, ...)

Arguments

x a numeric vector

mx number, the “center” of x wrt which the left and right parts of x are defined:

lmc(x, mx, *) := mc(x[x <= mx], *)
rmc(x, mx, *) := mc(x[x >= mx], *)

na.rm logical indicating how missing values (NAs) should be dealt with.

doReflect logical indicating if mc should also be computed on the reflected sample -x.
Setting doReflect=TRUE makes sense for mathematical strictness reasons, as
the internal MC computes the himedian() which can differ slightly from the
median. Note that mc()’s own default is true iff length(x) <= 100.

... further arguments to mc(), see its help page.
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Value

each a number (unless ... contains full.result = TRUE).

References

Brys, G., Hubert, M. and Struyf, A. (2006). Robust measures of tail weight, Computational Statis-
tics and Data Analysis 50(3), 733–759.

and those in ‘References’ of mc.

Examples

mc(1:5) # 0 for a symmetric sample
lmc(1:5) # 0
rmc(1:5) # 0

x1 <- c(1, 2, 7, 9, 10)
mc(x1) # = -1/3
c( lmc( x1), lmc( x1, doReflect=TRUE))# 0 -1/3
c( rmc( x1), rmc( x1, doReflect=TRUE))# -1/3 -1/6
c(-rmc(-x1), -rmc(-x1, doReflect=TRUE)) # 2/3 1/3

data(cushny)
lmc(cushny) # 0.2
rmc(cushny) # 0.45

isSym_LRmc <- function(x, tol = 1e-14)
all.equal(lmc(-x, doReflect=TRUE),

rmc( x, doReflect=TRUE), tolerance = tol)

sym <- c(-20, -5, -2:2, 5, 20)
stopifnot(exprs = {

lmc(sym) == 0.5
rmc(sym) == 0.5
isSym_LRmc(cushny)
isSym_LRmc(x1)

})

## Susceptibility to large outliers:
## "Sensitivity Curve" := empirical influence function
dX10 <- function(X) c(1:5,7,10,15,25, X) # generate skewed size-10 with 'X'
x <- c(26:40, 45, 50, 60, 75, 100)
(lmc10N <- vapply(x, function(X) lmc(dX10(X)), 1))
(rmc10N <- vapply(x, function(X) rmc(dX10(X)), 1))
cols <- adjustcolor(2:3, 3/4)

plot(x, lmc10N, type="o", cex=1/2, main = "lmc & rmc( c(1:5,7,10,15,25, X) )",
xlab=quote(X), log="x", col=cols[1])

lines(x, rmc10N, col=cols[2], lwd=3)
legend("top", paste0(c("lmc", "rmc"), "(X)"), col=cols, lty=1, lwd=c(1,3), pch = c(1, NA), bty="n")

n <- length(x)
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stopifnot(exprs = {
all.equal(current = lmc10N, target = rep(0, n))
all.equal(current = rmc10N, target = c(3/19, 1/5, 5/21, 3/11, 7/23, rep(1/3, n-5)))
## and it stays stable with outlier X --> oo :
lmc(dX10(1e300)) == 0
rmc(dX10(1e300)) == rmc10N[6]

})

lmrob MM-type Estimators for Linear Regression

Description

Computes fast MM-type estimators for linear (regression) models.

Usage

lmrob(formula, data, subset, weights, na.action, method = "MM",
model = TRUE, x = !control$compute.rd, y = FALSE,
singular.ok = TRUE, contrasts = NULL, offset = NULL,
control = NULL, init = NULL, ...)

Arguments

formula a symbolic description of the model to be fit. See lm and formula for more
details.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which lmrob is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of weights to be used in the fitting process (in addition to the
robustness weights computed in the fitting process).

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The “factory-fresh” default is na.omit. Another possible value is NULL,
no action. Value na.exclude can be useful.

method string specifying the estimator-chain. MM is interpreted as SM. See Details, no-
tably the currently recommended setting = "KS2014".

model, x, y logicals. If TRUE the corresponding components of the fit (the model frame, the
model matrix, the response) are returned.

singular.ok logical. If FALSE (the default in S but not in R) a singular fit is an error.

contrasts an optional list. See the contrasts.arg of model.matrix.default.
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offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. An offset term can be included in the formula
instead or as well, and if both are specified their sum is used.

control a list specifying control parameters; use the function lmrob.control(.) and
see its help page.

init an optional argument to specify or supply the initial estimate. See Details.

... additional arguments can be used to specify control parameters directly instead
of (but not in addition to!) via control.

Details

Overview: This function computes an MM-type regression estimator as described in Yohai (1987)
and Koller and Stahel (2011). By default it uses a bi-square redescending score function,
and it returns a highly robust and highly efficient estimator (with 50% breakdown point and
95% asymptotic efficiency for normal errors). The computation is carried out by a call to
lmrob.fit().
The argument setting of lmrob.control is provided to set alternative defaults as suggested
in Koller and Stahel (2011) (setting="KS2011"; now do use its extension setting="KS2014").
For further details, see lmrob.control.

Initial Estimator init: The initial estimator may be specified using the argument init. This can
either be

• a string used to specify built in internal estimators (currently "S" and "M-S", see See also
below);

• a function taking arguments x, y, control, mf (where mf stands for model.frame)
and returning a list containing at least the initial coefficients as component "coefficients"
and the initial scale estimate as "scale".

• Or a list giving the initial coefficients and scale as components "coefficients" and
"scale". See also Examples.

Note that when init is a function or list, the method argument must not contain the initial
estimator, e.g., use MDM instead of SMDM.
The default, equivalent to init = "S", uses as initial estimator an S-estimator (Rousseeuw
and Yohai, 1984) which is computed using the Fast-S algorithm of Salibian-Barrera and Yohai
(2006), calling lmrob.S(). That function, since March 2012, by default uses nonsingular
subsampling which makes the Fast-S algorithm feasible for categorical data as well, see Koller
(2012). Note that convergence problems may still show up as warnings, e.g.,

S refinements did not converge (to refine.tol=1e-07) in 200 (= k.max) steps

and often can simply be remedied by increasing (i.e. weakening) refine.tol or increasing
the allowed number of iterations k.max, see lmrob.control.

Method method: The following chain of estimates is customizable via the method argument. There
are currently two types of estimates available,

"M": corresponds to the standard M-regression estimate.
"D": stands for the Design Adaptive Scale estimate as proposed in Koller and Stahel (2011).
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The method argument takes a string that specifies the estimates to be calculated as a chain.
Setting method='SMDM' will result in an intial S-estimate, followed by an M-estimate, a De-
sign Adaptive Scale estimate and a final M-step. For methods involving a D-step, the default
value of psi (see lmrob.control) is changed to "lqq".
By default, standard errors are computed using the formulas of Croux, Dhaene and Hoorel-
beke (2003) (lmrob.control option cov=".vcov.avar1"). This method, however, works
only for MM-estimates (i.e., method = "MM" or = "SM"). For other method arguments, the
covariance matrix estimate used is based on the asymptotic normality of the estimated coeffi-
cients (cov=".vcov.w") as described in Koller and Stahel (2011). The var-cov computation
can be skipped by cov = "none" and (re)done later by e.g., vcov(<obj>, cov = ".vcov.w").
As of robustbase version 0.91-0 (April 2014), the computation of robust standard errors for
method="SMDM" has been changed. The old behaviour can be restored by setting the control
parameter cov.corrfact = "tauold".

Value

An object of class lmrob; a list including the following components:

coefficients The estimate of the coefficient vector
scale The scale as used in the M estimator.
residuals Residuals associated with the estimator.
converged TRUE if the IRWLS iterations have converged.
iter number of IRWLS iterations
rweights the “robustness weights” ψ(ri/S)/(ri/S).
fitted.values Fitted values associated with the estimator.
init.S The list returned by lmrob.S() or lmrob.M.S() (for MM-estimates, i.e., method="MM"

or "SM" only)
init A similar list that contains the results of intermediate estimates (not for MM-

estimates).
rank the numeric rank of the fitted linear model.
cov The estimated covariance matrix of the regression coefficients
df.residual the residual degrees of freedom.
weights the specified weights (missing if none were used).
na.action (where relevant) information returned by model.frame on the special handling

of NAs.
offset the offset used (missing if none were used).
contrasts (only where relevant) the contrasts used.
xlevels (only where relevant) a record of the levels of the factors used in fitting.
call the matched call.
terms the terms object used.
model if requested (the default), the model frame used.
x if requested, the model matrix used.
y if requested, the response used.

In addition, non-null fits will have components assign, and qr relating to the linear fit, for use by
extractor functions such as summary.



lmrob 73

Author(s)

(mainly:) Matias Salibian-Barrera and Manuel Koller

References

Croux, C., Dhaene, G. and Hoorelbeke, D. (2003) Robust standard errors for robust estimators,
Discussion Papers Series 03.16, K.U. Leuven, CES.

Koller, M. (2012) Nonsingular subsampling for S-estimators with categorical predictors, ArXiv
e-prints https://arxiv.org/abs/1208.5595; extended version published as Koller and Stahel
(2017), see lmrob.control.

Koller, M. and Stahel, W.A. (2011) Sharpening Wald-type inference in robust regression for small
samples. Computational Statistics & Data Analysis 55(8), 2504–2515.

Maronna, R. A., and Yohai, V. J. (2000) Robust regression with both continuous and categorical
predictors. Journal of Statistical Planning and Inference 89, 197–214.

Rousseeuw, P.J. and Yohai, V.J. (1984) Robust regression by means of S-estimators, In Robust and
Nonlinear Time Series, J. Franke, W. Härdle and R. D. Martin (eds.). Lectures Notes in Statistics
26, 256–272, Springer Verlag, New York.

Salibian-Barrera, M. and Yohai, V.J. (2006) A fast algorithm for S-regression estimates, Journal of
Computational and Graphical Statistics 15(2), 414–427. doi:10.1198/106186006X113629

Yohai, V.J. (1987) High breakdown-point and high efficiency estimates for regression. The Annals
of Statistics 15, 642–65.

Yohai, V., Stahel, W.~A. and Zamar, R. (1991) A procedure for robust estimation and inference
in linear regression; in Stahel and Weisberg (eds), Directions in Robust Statistics and Diagnostics,
Part II, Springer, New York, 365–374; doi:10.1007/9781461244448_20.

See Also

lmrob.control; for the algorithms lmrob.S, lmrob.M.S and lmrob.fit; and for methods, summary.lmrob,
for the extra “statistics”, notably R2 (“R squared”); predict.lmrob, print.lmrob, plot.lmrob,
and weights.lmrob.

Examples

data(coleman)
set.seed(0)
## Default for a very long time:
summary( m1 <- lmrob(Y ~ ., data=coleman) )

## Nowadays **strongly recommended** for routine use:
summary(m2 <- lmrob(Y ~ ., data=coleman, setting = "KS2014") )
## ------------------

plot(residuals(m2) ~ weights(m2, type="robustness")) ##-> weights.lmrob()
abline(h=0, lty=3)

data(starsCYG, package = "robustbase")
## Plot simple data and fitted lines
plot(starsCYG)

https://arxiv.org/abs/1208.5595
https://doi.org/10.1198/106186006X113629
https://doi.org/10.1007/978-1-4612-4444-8_20
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lmST <- lm(log.light ~ log.Te, data = starsCYG)
(RlmST <- lmrob(log.light ~ log.Te, data = starsCYG))
abline(lmST, col = "red")
abline(RlmST, col = "blue")
## --> Least Sq.:/ negative slope \ robust: slope ~= 2.2 % checked in ../tests/lmrob-data.R
summary(RlmST) # -> 4 outliers; rest perfect
vcov(RlmST)
stopifnot(all.equal(fitted(RlmST),

predict(RlmST, newdata = starsCYG), tol = 1e-14))
## FIXME: setting = "KS2011" or setting = "KS2014" **FAIL** here

##--- 'init' argument -----------------------------------
## 1) string
set.seed(0)
m3 <- lmrob(Y ~ ., data=coleman, init = "S")
stopifnot(all.equal(m1[-18], m3[-18]))
## 2) function
initFun <- function(x, y, control, ...) { # no 'mf' needed

init.S <- lmrob.S(x, y, control)
list(coefficients=init.S$coef, scale = init.S$scale)

}
set.seed(0)
m4 <- lmrob(Y ~ ., data=coleman, method = "M", init = initFun)
## list
m5 <- lmrob(Y ~ ., data=coleman, method = "M",

init = list(coefficients = m3$init$coef, scale = m3$scale))
stopifnot(all.equal(m4[-17], m5[-17]))

lmrob..D..fit Compute Design Adaptive Scale estimate

Description

This function calculates a Design Adaptive Scale estimate for a given MM-estimate. This is sup-
posed to be a part of a chain of estimates like SMD or SMDM.

Usage

lmrob..D..fit(obj, x=obj$x, control = obj$control,
mf,
method = obj$control$method)

Arguments

obj lmrob-object based on which the estimate is to be calculated.
x the design matrix; if missing, the method tries to get it from obj$x and if this

fails from obj$model.
control list of control parameters, as returned by lmrob.control.
mf defunct.
method optional; the method used for obj computation.
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Details

This function is used by lmrob.fit and typically not to be used on its own. Note that lmrob.fit()
specifies control potentially differently than the default, but does use the default for method.

Value

The given lmrob-object with the following elements updated:

scale The Design Adaptive Scale estimate

converged TRUE if the scale calculation converged, FALSE other.

Author(s)

Manuel Koller

References

Koller, M. and Stahel, W.A. (2011), Sharpening Wald-type inference in robust regression for small
samples, Computational Statistics & Data Analysis 55(8), 2504–2515.

See Also

lmrob.fit, lmrob

Examples

data(stackloss)
## Compute manual SMD-estimate:
## 1) MM-estimate
m1 <- lmrob(stack.loss ~ ., data = stackloss)
## 2) Add Design Adaptive Scale estimate
m2 <- lmrob..D..fit(m1)
print(c(m1$scale, m2$scale))

summary(m1)
summary(m2) ## the covariance matrix estimate is also updated

lmrob..M..fit Compute M-estimators of regression

Description

This function performs RWLS iterations to find an M-estimator of regression. When started from
an S-estimated beta.initial, this results in an MM-estimator.
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Usage

lmrob..M..fit(x = obj$x, y = obj$y,
beta.initial = obj$coef, scale = obj$scale, control = obj$control,
obj,
mf,
method = obj$control$method)

Arguments

x design matrix (n× p) typically including a column of 1s for the intercept.

y numeric response vector (of length n).

beta.initial numeric vector (of length p) of initial estimate. Usually the result of an S-
regression estimator.

scale robust residual scale estimate. Usually an S-scale estimator.

control list of control parameters, as returned by lmrob.control. Currently, the compo-
nents c("max.it", "rel.tol","trace.lev", "psi", "tuning.psi", "mts",
"subsampling") are accessed.

obj an optional lmrob-object. If specified, this is typically used to set values for the
other arguments.

mf defunct.

method optional; the method used for obj computation.

Details

This function is used by lmrob.fit (and anova(<lmrob>, type = "Deviance")) and typically not
to be used on its own.

Value

A list with the following elements:

coef the M-estimator (or MM-estim.) of regression

control the control list input used

scale The residual scale estimate

seed The random number generator seed

converged TRUE if the RWLS iterations converged, FALSE otherwise

Author(s)

Matias Salibian-Barrera and Martin Maechler

References

Yohai, 1987
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See Also

lmrob.fit, lmrob; rlm from package MASS.

Examples

data(stackloss)
X <- model.matrix(stack.loss ~ . , data = stackloss)
y <- stack.loss
## Compute manual MM-estimate:
## 1) initial LTS:
m0 <- ltsReg(X[,-1], y)
## 2) M-estimate started from LTS:
m1 <- lmrob..M..fit(X, y, beta.initial = coef(m0), scale = m0$scale, method = "SM",

control = lmrob.control(tuning.psi = 1.6, psi = 'bisquare'))
## no 'method' (nor 'obj'):
m1. <- lmrob..M..fit(X, y, beta.initial = coef(m0), scale = m0$scale,

control = m1$control)
stopifnot(all.equal(m1, m1., tol = 1e-15)) # identical {call *not* stored!}

cbind(m0$coef, m1$coef)
## the scale is kept fixed:
stopifnot(identical(unname(m0$scale), m1$scale))

## robustness weights: are
r.s <- with(m1, residuals/scale) # scaled residuals
m1.wts <- Mpsi(r.s, cc = 1.6, psi="tukey") / r.s
summarizeRobWeights(m1.wts)
##--> outliers 1,3,4,13,21
which(m0$lts.wt == 0) # 1,3,4,21 but not 13

## Manually add M-step to SMD-estimate (=> equivalent to "SMDM"):
m2 <- lmrob(stack.loss ~ ., data = stackloss, method = 'SMD')
m3 <- lmrob..M..fit(obj = m2)

## Simple function that allows custom initial estimates
## (Deprecated; use init argument to lmrob() instead.) %% MM: why deprecated?
lmrob.custom <- function(x, y, beta.initial, scale, terms) {

## initialize object
obj <- list(control = lmrob.control("KS2011"),

terms = terms) ## terms is needed for summary()
## M-step
obj <- lmrob..M..fit(x, y, beta.initial, scale, obj = obj)
## D-step
obj <- lmrob..D..fit(obj, x)
## Add some missing elements
obj$cov <- TRUE ## enables calculation of cov matrix
obj$p <- obj$qr$rank
obj$degree.freedom <- length(y) - obj$p
## M-step
obj <- lmrob..M..fit(x, y, obj=obj)
obj$control$method <- ".MDM"
obj

https://CRAN.R-project.org/package=MASS
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}

m4 <- lmrob.custom(X, y, m2$init$init.S$coef,
m2$init$scale, m2$terms)

stopifnot(all.equal(m4$coef, m3$coef))

## Start from ltsReg:
m5 <- ltsReg(stack.loss ~ ., data = stackloss)
m6 <- lmrob.custom(m5$X, m5$Y, coef(m5), m5$scale, m5$terms)

lmrob.control Tuning Parameters for lmrob() and Auxiliaries

Description

Tuning parameters for lmrob, the MM-type regression estimator and the associated S-, M- and D-
estimators. Using setting="KS2011" sets the defaults as suggested by Koller and Stahel (2011)
and analogously for "KS2014".
The .M*.default functions and .M*.defaults lists contain default tuning parameters for all
the predefined ψ functions, see also Mpsi, etc.

Usage

lmrob.control(setting, seed = NULL, nResample = 500,
tuning.chi = NULL, bb = 0.5, tuning.psi = NULL,
max.it = 50, groups = 5, n.group = 400,
k.fast.s = 1, best.r.s = 2,
k.max = 200, maxit.scale = 200, k.m_s = 20,

refine.tol = 1e-7, rel.tol = 1e-7, scale.tol = 1e-10, solve.tol = 1e-7,
zero.tol = 1e-10,
trace.lev = 0,
mts = 1000, subsampling = c("nonsingular", "simple"),
compute.rd = FALSE, method = "MM", psi = "bisquare",
numpoints = 10, cov = NULL,
split.type = c("f", "fi", "fii"), fast.s.large.n = 2000,
# only for outlierStats() :
eps.outlier = function(nobs) 0.1 / nobs,
eps.x = function(maxx) .Machine$double.eps^(.75)*maxx,
compute.outlier.stats = method,
warn.limit.reject = 0.5,
warn.limit.meanrw = 0.5, ...)

## S3 method for class 'lmrobCtrl'
update(object, ...)

.Mchi.tuning.defaults

.Mchi.tuning.default(psi)

.Mpsi.tuning.defaults

.Mpsi.tuning.default(psi)
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Arguments

setting a string specifying alternative default values. Leave empty for the defaults or use
"KS2011" or "KS2014" for the defaults suggested by Koller and Stahel (2011,
2017). See Details.

seed NULL or an integer vector compatible with .Random.seed: the seed to be used
for random re-sampling used in obtaining candidates for the initial S-estimator.
The current value of .Random.seed will be preserved if seed is set, i.e. non-
NULL; otherwise, as by default, .Random.seed will be used and modified as
usual from calls to runif() etc.

nResample number of re-sampling candidates to be used to find the initial S-estimator. Cur-
rently defaults to 500 which works well in most situations (see references).

tuning.chi tuning constant vector for the S-estimator. If NULL, as by default, sensible de-
faults are set (depending on psi) to yield a 50% breakdown estimator. See
Details.

bb expected value under the normal model of the “chi” (rather ρ(rho)) function
with tuning constant equal to tuning.chi. This is used to compute the S-
estimator.

tuning.psi tuning constant vector for the redescending M-estimator. If NULL, as by default,
this is set (depending on psi) to yield an estimator with asymptotic efficiency
of 95% for normal errors. See Details.

max.it integer specifying the maximum number of IRWLS iterations.

groups (for the fast-S algorithm): Number of random subsets to use when the data set
is large.

n.group (for the fast-S algorithm): Size of each of the groups above. Note that this must
be at least p.

k.fast.s (for the fast-S algorithm): Number of local improvement steps (“I-steps”) for
each re-sampling candidate.

k.m_s (for the M-S algorithm): specifies after how many unsuccessful refinement steps
the algorithm stops.

best.r.s (for the fast-S algorithm): Number of of best candidates to be iterated further
(i.e., “refined”); is denoted t in Salibian-Barrera & Yohai(2006).

k.max (for the fast-S algorithm): maximal number of refinement steps for the “fully”
iterated best candidates.

maxit.scale integer specifying the maximum number of C level find_scale() iterations (in
fast-S and M-S algorithms).

refine.tol (for the fast-S algorithm): relative convergence tolerance for the fully iterated
best candidates.

rel.tol (for the RWLS iterations of the MM algorithm): relative convergence tolerance
for the parameter vector.

scale.tol (for the scale estimation iterations of the S algorithm): relative convergence
tolerance for the scale σ(.).

solve.tol (for the S algorithm): relative tolerance for inversion. Hence, this corresponds
to solve.default()’s tol.
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zero.tol for checking 0-residuals in the S algorithm, non-negative number ϵz such that
{i;

∣∣∣R̃i

∣∣∣ ≤ ϵz} correspond to 0-residuals, where R̃i are standardized residuals,

R̃i = Ri/sy and sy = 1
n

∑n
i=1 |yi|.

trace.lev integer indicating if the progress of the MM-algorithm and the fast-S algorithms,
see lmrob.S, should be traced (increasingly); default trace.lev = 0 does no
tracing.

mts maximum number of samples to try in subsampling algorithm.
subsampling type of subsampling to be used, a string: "simple" for simple subsampling

(default prior to version 0.9), "nonsingular" for nonsingular subsampling. See
also lmrob.S.

compute.rd logical indicating if robust distances (based on the MCD robust covariance es-
timator covMcd) are to be computed for the robust diagnostic plots. This may
take some time to finish, particularly for large data sets, and can lead to singu-
larity problems when there are factor explanatory variables (with many levels,
or levels with “few” observations). Hence, is FALSE by default.

method string specifying the estimator-chain. MM is interpreted as SM. See Details of
lmrob for a description of the possible values.

psi string specifying the type ψ-function used. See Details of lmrob. Defaults to
"bisquare" for S and MM-estimates, otherwise "lqq".

numpoints number of points used in Gauss quadrature.
cov function or string with function name to be used to calculate covariance ma-

trix estimate. The default is if(method %in% c('SM', 'MM')) ".vcov.avar1"
else ".vcov.w". See Details of lmrob.

split.type determines how categorical and continuous variables are split. See splitFrame.
fast.s.large.n minimum number of observations required to switch from ordinary “fast S” al-

gorithm to an efficient “large n” strategy.
eps.outlier limit on the robustness weight below which an observation is considered to be an

outlier. Either a numeric(1) or a function that takes the number of observations
as an argument. Used only in summary.lmrob and outlierStats.

eps.x limit on the absolute value of the elements of the design matrix below which
an element is considered zero. Either a numeric(1) or a function that takes the
maximum absolute value in the design matrix as an argument.

compute.outlier.stats

vector of character strings, each valid to be used as method argument. Used
to specify for which estimators outlier statistics (and warnings) should be pro-
duced. Set to empty (NULL or character(0)) if none are required.
Note that the default is method which by default is either "MM", "SM", or "SMDM";
hence using compute.outlier.stats = "S" provides outlierStats() to a lmrob.S()
result.

warn.limit.reject

limit of ratio #rejected/#obs in level above (≥) which a warning is produced.
Set to NULL to disable warning.

warn.limit.meanrw

limit of the mean robustness per factor level below which (≤) a warning is pro-
duced. Set to NULL to disable warning.
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object an "lmrobCtrl" object, as resulting from a lmrob.control(*) or an update(<lmrobCtrl>,
*) call.

... for

lmrob.control(): further arguments to be added as list components to the
result, e.g., those to be used in .vcov.w().

update(object, *): (named) components from object, to be modified, not
setting = *.

Details

The option setting="KS2011" alters the default arguments. They are changed to method = "SMDM",
psi = "lqq", max.it = 500, k.max = 2000, cov = ".vcov.w". The defaults of all the remaining
arguments are not changed.

The option setting="KS2014" builds upon setting="KS2011". More arguments are changed to
best.r.s = 20, k.fast.s = 2, nResample = 1000. This setting should produce more stable esti-
mates for designs with factors.

By default, and in .Mpsi.tuning.default() and .Mchi.tuning.default(), tuning.chi and
tuning.psi are set to yield an MM-estimate with breakdown point 0.5 and efficiency of 95% at
the normal.

If numeric tuning.chi or tuning.psi are specified, say cc, for psi = "ggw" or "lqq", .psi.const(cc,
psi) is used, see its help page.

To get the defaults, e.g., .Mpsi.tuning.default(psi) is equivalent to but more efficient than the
formerly widely used lmrob.control(psi = psi)$tuning.psi.

These defaults are:

psi tuning.chi tuning.psi
bisquare 1.54764 4.685061

welsh 0.5773502 2.11
ggw c(-0.5, 1.5, NA, 0.5) c(-0.5, 1.5, 0.95, NA)
lqq c(-0.5, 1.5, NA, 0.5) c(-0.5, 1.5, 0.95, NA)

optimal 0.4047 1.060158
hampel c(1.5, 3.5, 8)*0.2119163 c(1.5, 3.5, 8)*0.9014

The values for the tuning constant for the ggw and lqq psi functions are specified differently here by
a vector with four elements: minimal slope, b (controlling the bend at the maximum of the curve),
efficiency, breakdown point. Use NA for an unspecified value of either efficiency or breakdown
point, see examples in the tables (above and below). For these table examples, the respective “inner
constants” are stored precomputed, see .psi.lqq.findc for more.

The constants for the "hampel" psi function are chosen to have a redescending slope of −1/3.
Constants for a slope of −1/2 would be

psi tuning.chi tuning.psi
"hampel" c(2, 4, 8) * 0.1981319 c(2, 4, 8) * 0.690794

Alternative coefficients for an efficiency of 85% at the normal are given in the table below.
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psi tuning.psi
bisquare 3.443689

welsh 1.456
ggw, lqq c(-0.5, 1.5, 0.85, NA)
optimal 0.8684

hampel (-1/3) c(1.5, 3.5, 8)* 0.5704545
hampel (-1/2) c( 2, 4, 8) * 0.4769578

Value

.Mchi.tuning.default(psi) and .Mpsi.tuning.default(psi) return a short numeric vector
of tuning constants which are defaults for the corresponding psi-function, see the Details. They are
based on the named lists .Mchi.tuning.defaults and .Mpsi.tuning.defaults, respectively.

lmrob.control() returns a named list with over twenty components, corresponding to the argu-
ments, where tuning.psi and tuning.chi are typically computed, as .Mpsi.tuning.default(psi)
or .Mchi.tuning.default(psi), respectively. It is of class "lmrobCtrl" and we provide print(),
update() and within methods.

update(<lmrobCtrl>, ....) does not allow a setting="<...>" in .....

Author(s)

Matias Salibian-Barrera, Martin Maechler and Manuel Koller

References

Koller, M. and Stahel, W.A. (2011) Sharpening Wald-type inference in robust regression for small
samples. Computational Statistics & Data Analysis 55(8), 2504–2515.

Koller, M. and Stahel, W.A. (2017) Nonsingular subsampling for regression S estimators with cat-
egorical predictors, Computational Statistics 32(2): 631–646. doi:10.1007/s001800160679x. Re-
ferred as "KS2014" everywhere in robustbase; A shorter first version, Koller (2012) has been avail-
able from https://arxiv.org/abs/1208.5595.

See Also

Mpsi, etc, for the (fast!) psi function computations; lmrob, also for references and examples.

Examples

## Show the default settings:
str(lmrob.control())

## Artificial data for a simple "robust t test":
set.seed(17)
y <- y0 <- rnorm(200)
y[sample(200,20)] <- 100*rnorm(20)
gr <- as.factor(rbinom(200, 1, prob = 1/8))
lmrob(y0 ~ 0+gr)

## Use Koller & Stahel(2011)'s recommendation but a larger 'max.it':

https://doi.org/10.1007/s00180-016-0679-x
https://arxiv.org/abs/1208.5595
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str(ctrl <- lmrob.control("KS2011", max.it = 1000))

str(.Mpsi.tuning.defaults)
stopifnot(identical(.Mpsi.tuning.defaults,

sapply(names(.Mpsi.tuning.defaults),
.Mpsi.tuning.default)))

## Containing (names!) all our (pre-defined) redescenders:
str(.Mchi.tuning.defaults)

## Difference between settings:
Cdef <- lmrob.control()
C11 <- lmrob.control("KS2011")
C14 <- lmrob.control("KS2014")
str(C14)
## Differences:
diffD <- names(which(!mapply(identical, Cdef,C11, ignore.environment=TRUE)))
diffC <- names(which(!mapply(identical, C11, C14, ignore.environment=TRUE)))
## KS2011 vs KS2014: Apart from `setting` itself, they only differ in three places:
cbind(KS11 = unlist(C11[diffC[-1]]),

KS14 = unlist(C14[diffC[-1]]))
## KS11 KS14
## nResample 500 1000
## best.r.s 2 20
## k.fast.s 1 2
## default vs KS2011: a bit more: setting + 8
str2simpLang <- function(x) {

r <- if(is.null(x)) quote((NULL)) else str2lang(deparse(x))
if(is.call(r)) format(r) else r

}
cbind(deflt= lapply(Cdef[diffD], str2simpLang),

KS11 = lapply(C11 [diffD], str2simpLang))

## update()ing a lmrob.control() , e.g.,
C14mod <- update(C14, trace.lev = 2) # the same as
C14m.d <- C14; C14m.d$trace.lev <- 2
stopifnot(identical(C14mod, C14m.d))
## changing psi --> updates tuning.{psi,chi}:
C14mp <- update(C14, psi = "hampel", seed=101)
## updating 'method' is "smart" :
C.SMDM <- update(Cdef, method="SMDM")
all.equal(Cdef, C.SMDM) # changed also psi, tuning.{psi,chi} and cov !
chgd <- c("method", "psi", "tuning.chi", "tuning.psi", "cov")
str(Cdef [chgd])
str(C.SMDM[chgd])
C14m <- update(C14, method="SMM")
(ae <- all.equal(C14, C14mp))# changed tuning.psi & tuning.chi, too
stopifnot(exprs = {

identical(C14, update(C14, method="SMDM")) # no change!
identical(c("psi", "seed", "tuning.chi", "tuning.psi"),

sort(gsub("[^.[:alpha:]]", "", sub(":.*", "", sub("^Component ", "", ae)))))
identical(C14m, local({C <- C14; C$method <- "SMM"; C}))

})
##
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try( update(C14, setting="KS2011") ) #--> Error: .. not allowed

lmrob.fit MM-type estimator for regression

Description

Compute MM-type estimators of regression: An S-estimator is used as starting value, and an M-
estimator with fixed scale and redescending psi-function is used from there. Optionally a D-step
(Design Adaptive Scale estimate) as well as a second M-step is calculated.

Usage

lmrob.fit(x, y, control, init = NULL, mf = NULL, bare.only = FALSE)

Arguments

x design matrix (n× p) typically including a column of 1s for the intercept.

y numeric response vector (of length n).

control a list of control parameters as returned by lmrob.control, used for both the
initial S-estimate and the subsequent M- and D-estimates.

init optional list of initial estimates. See Details.

mf defunct.

bare.only logical indicating if the result should be return()ed after the bare computation
steps are done. Useful, e.g., when you only need the coefficients.

Details

This function is the basic fitting function for MM-type estimation, called by lmrob and typically
not to be used on its own.

If given, init must be a list of initial estimates containing at least the initial coefficients and scale
as coefficients and scale. Otherwise it calls lmrob.S(..) and uses it as initial estimator.

Value

A list with components (some missing in case bare.only is true)

fitted.values Xβ, i.e., X %*% coefficients.

residuals the raw residuals, y - fitted.values

rweights robustness weights derived from the final M-estimator residuals (even when not
converged).

rank

degree.freedom n - rank

coefficients estimated regression coefficient vector
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scale the robustly estimated error standard deviation

cov variance-covariance matrix of coefficients, if the RWLS iterations have con-
verged (and control$cov is not "none").

control

iter

converged logical indicating if the RWLS iterations have converged.

init.S the whole initial S-estimator result, including its own converged flag, see lmrob.S
(only for MM-estimates).

init A similar list that contains the results of intermediate estimates (not for MM-
estimates).

Author(s)

Matias Salibian-Barrera, Martin Maechler and Manuel Koller

See Also

lmrob, lmrob..M..fit, lmrob..D..fit, lmrob.S

lmrob.lar Least Absolute Residuals / L1 Regression

Description

To compute least absolute residuals (LAR) or “L1” regression, lmrob.lar implements the routine
L1 in Barrodale and Roberts (1974), which is based on the simplex method of linear programming.
It is a copy of lmRob.lar (in early 2012) from the robust package.

Usage

lmrob.lar(x, y, control, ...)

Arguments

x numeric matrix for the predictors.

y numeric vector for the response.

control list as returned by lmrob.control() .

... (unused but needed when called as init(x,y,ctrl, mf) from lmrob())

Details

This method is used for computing the M-S estimate and typically not to be used on its own.

A description of the Fortran subroutines used can be found in Marazzi (1993). In the book, the main
method is named RILARS.

https://CRAN.R-project.org/package=robust
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Value

A list that includes the following components:

coef The L1-estimate of the coefficient vector

scale The residual scale estimate (mad)

resid The residuals

iter The number of iterations required by the simplex algorithm

status Return status (0: optimal, but non unique solution, 1: optimal unique solution)

converged Convergence status (always TRUE), needed for lmrob.fit.

Author(s)

Manuel Koller

References

Marazzi, A. (1993). Algorithms, routines, and S functions for robust statistics. Wadsworth &
Brooks/Cole, Pacific Grove, CA.

See Also

rq from CRAN package quantreg.

Examples

data(stackloss)
X <- model.matrix(stack.loss ~ . , data = stackloss)
y <- stack.loss
(fm.L1 <- lmrob.lar(X, y))
with(fm.L1, stopifnot(converged

, status == 1L
, all.equal(scale, 1.5291576438)
, sum(abs(residuals) < 1e-15) == 4 # p=4 exactly fitted obs.

))

lmrob.M.S M-S regression estimators

Description

Computes an M-S-estimator for linear regression using the “M-S” algorithm.

Usage

lmrob.M.S(x, y, control, mf,
split = splitFrame(mf, x, control$split.type))

https://CRAN.R-project.org/package=quantreg
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Arguments

x numeric matrix (a model.matrix) of the predictors.
y numeric vector for the response
control list as returned by lmrob.control.
mf a model frame as returned by model.frame.
split (optional) list as returned by splitFrame.

Details

This function is used by lmrob and not intended to be used on its own (because an M-S-estimator
has too low efficiency ‘on its own’).

An M-S estimator is a combination of an S-estimator for the continuous variables and an L1-
estimator (i.e. an M-estimator with ψ(t) = sign(t)) for the categorical variables.

The S-estimator is estimated using a subsampling algorithm. If the model includes interactions
between categorical (factor) and continuous variables, the subsampling algorithm might fail. In
this case, one can choose to assign the interaction to the categorical side of variables rather than
to the continuous side. This can be accomplished via the control argument split.type or by
specifying split, see splitFrame.

Note that the return status converged does not refer to the actual convergence status. The algorithm
used does not guarantee convergence and thus true convergence is almost never reached. This is,
however, not a problem if the estimate is only used as initial estimate part of an MM or SMDM
estimate.

The algorithm sometimes produces the warning message “Skipping design matrix equilibration
(dgeequ): row ?? is exactly zero.”. This is just an artifact of the algorithm and can be ignored
safely.

Value

A list with components

coefficients numeric vector (length p) of M-S-regression coefficient estimates.
scale the M-S-scale residual estimate
residuals numeric vector (legnth n) of the residuals.
rweights numeric vector (length n) of the robustness weights.
control the same list as the control argument.
converged Convergence status (always TRUE), needed for lmrob.fit.
descent.cov logical with the true m_s_descent convergence status.

Author(s)

Manuel Koller

References

Maronna, R. A., and Yohai, V. J. (2000). Robust regression with both continuous and categorical
predictors. Journal of Statistical Planning and Inference 89, 197–214.
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See Also

lmrob; for a description of the available split types, see splitFrame.

lmRob in package robust uses a version of the M-S algorithm automatically when the formula
contains factors. Our version however follows Maronna and Yohai (2000) more closely.

Examples

data(education)
education <- within(education, Region <- factor(Region))
flm <- lm(Y ~ Region + X1 + X2 + X3, education)
x <- model.matrix(flm)
y <- education$Y # == model.response(model.frame(flm))
set.seed(17)
f.MS <- lmrob.M.S(x, y, control = lmrob.control(),

mf = model.frame(flm))

## The typical use of the "M-S" estimator -- as initial estimate :
fmMS <- lmrob(Y ~ Region + X1 + X2 + X3, education,

init = "M-S")

lmrob.S S-regression estimators

Description

Computes an S-estimator for linear regression, using the “fast S” algorithm.

Usage

lmrob.S(x, y, control,
trace.lev = control$trace.lev,
only.scale = FALSE, mf)

Arguments

x design matrix (n× p)

y numeric vector of responses (or residuals for only.scale=TRUE).

control list as returned by lmrob.control; the following components are used for lmrob.S():
"trace.lev", "nResample", "groups", "n.group", "fast.s.large.n", "seed",
"bb", "psi", "tuning.chi", "best.r.s", "k.fast.s", "k.max", "maxit.scale",
"refine.tol", "solve.tol", "scale.tol", "mts", "subsampling".

trace.lev integer indicating if the progress of the algorithm should be traced (increas-
ingly); default trace.lev = 0 does no tracing.

only.scale logical indicating if only the scale of y should be computed. In this case, y
will typically contain residuals.

mf defunct.

https://CRAN.R-project.org/package=robust
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Details

This function is used by lmrob.fit and typically not to be used on its own (because an S-estimator
has too low efficiency ‘on its own’).

By default, the subsampling algorithm uses a customized LU decomposition which ensures a non
singular subsample (if this is at all possible). This makes the Fast-S algorithm also feasible for
categorical and mixed continuous-categorical data.

One can revert to the old subsampling scheme by setting the parameter subsampling in control
to "simple".

Value

By default (when only.scale is false), a list with components

coefficients numeric vector (length p) of S-regression coefficient estimates.

scale the S-scale residual estimate

fitted.values numeric vector (length n) of the fitted values.

residuals numeric vector (length n) of the residuals.

rweights numeric vector (length n) of the robustness weights.

k.iter (maximal) number of refinement iterations used.

converged logical indicating if all refinement iterations had converged.

control the same list as the control argument.

If only.scale is true, the computed scale (a number) is returned.

Author(s)

Matias Salibian-Barrera and Manuel Koller; Martin Maechler for minor new options and more
documentation.

See Also

lmrob, also for references.

Examples

set.seed(33)
x1 <- sort(rnorm(30)); x2 <- sort(rnorm(30)); x3 <- sort(rnorm(30))
X. <- cbind(x1, x2, x3)
y <- 10 + X. %*% (10*(2:4)) + rnorm(30)/10
y[1] <- 500 # a moderate outlier
X.[2,1] <- 20 # an X outlier
X1 <- cbind(1, X.)

(m.lm <- lm(y ~ X.))
set.seed(12)
m.lmS <- lmrob.S(x=X1, y=y,

control = lmrob.control(nRes = 20), trace.lev=1)
m.lmS[c("coefficients","scale")]
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all.equal(unname(m.lmS$coef), 10 * (1:4), tolerance = 0.005)
stopifnot(all.equal(unname(m.lmS$coef), 10 * (1:4), tolerance = 0.005),

all.equal(m.lmS$scale, 1/10, tolerance = 0.09))

## only.scale = TRUE: Compute the S scale, given residuals;
s.lmS <- lmrob.S(X1, y=residuals(m.lmS), only.scale = TRUE,

control = lmrob.control(trace.lev = 3))
all.equal(s.lmS, m.lmS$scale) # close: 1.89e-6 [64b Lnx]

los Length of Stay Data

Description

Length of stay for 201 patients that stayed at the University Hospital of Lausanne during the year
2000.

Usage

data(los, package="robustbase")

Format

Vector of integer values giving the length of stay (days):

int [1:201] 16 13 17 4 15 24 59 18 33 8 ...

Details

These data may be used to estimate and predict the total resource consumption of this group of
patients.

Cf. Ruffieux, Paccaud and Marazzi (2000).

Source

The data were kindly provided by A. Marazzi.

Cf. Hubert, M. and Vandervieren, E. (2006), p. 13–15.

References

Ruffieux, C., Paccaud, F. and A. Marazzi (2000) Comparing rules for truncating hospital length of
stay; Casemix Quarterly 2, n. 1.

See also those for adjbox.
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Examples

summary(los) # quite skewed, with median(.) = 8
plot(table(los))
boxplot(los, horizontal=TRUE, add=TRUE, col = "red", axes=FALSE)
##-> "outliers" instead of "just skewed"

hist(log(los))
boxplot(log(los), add=TRUE, col=2, border=2, horizontal = TRUE, at = -1)

## Hubert and Vandervieren (2006), p. 15, Fig. 11.
adjbox(los, col = "gray", staplecol="red", outcol = "red",

main = "(Skewness-)Adjusted and original boxplot for 'los' data")
boxplot(los, add = TRUE, staplewex= 0.2, outcex= 0.5, outpch= 4,

staplecol = "blue", outcol = "blue", staplelwd=2)
legend("topright", c("adjbox(los)", "boxplot(los)"),

col=c("red","blue"), lwd = 1:2, bty="n")

ltsReg Least Trimmed Squares Robust (High Breakdown) Regression

Description

Carries out least trimmed squares (LTS) robust (high breakdown point) regression.

Usage

ltsReg(x, ...)

## S3 method for class 'formula'
ltsReg(formula, data, subset, weights, na.action,

model = TRUE, x.ret = FALSE, y.ret = FALSE,
contrasts = NULL, offset, ...)

## Default S3 method:
ltsReg(x, y, intercept = TRUE, alpha = , nsamp = , adjust = ,

mcd = TRUE, qr.out = FALSE, yname = NULL,
seed = , trace = , use.correction = , wgtFUN = , control = rrcov.control(),
...)

Arguments

formula a formula of the form y ~ x1 + x2 + ....

data data frame from which variables specified in formula are to be taken.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of weights to be used in the fitting process. NOT USED
YET.
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na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The “factory-fresh” default is na.omit. Another possible value is NULL,
no action. Value na.exclude can be useful.

model, x.ret, y.ret
logicals indicating if the model frame, the model matrix and the response are
to be returned, respectively.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. An offset term can be included in the formula
instead or as well, and if both are specified their sum is used.

x a matrix or data frame containing the explanatory variables.

y the response: a vector of length the number of rows of x.

.

intercept if true, a model with constant term will be estimated; otherwise no constant term
will be included. Default is intercept = TRUE

alpha the percentage (roughly) of squared residuals whose sum will be minimized, by
default 0.5. In general, alpha must between 0.5 and 1.

nsamp number of subsets used for initial estimates or "best" or "exact". Default is
nsamp = 500. For nsamp="best" exhaustive enumeration is done, as long as the
number of trials does not exceed 5000. For "exact", exhaustive enumeration
will be attempted however many samples are needed. In this case a warning
message will be displayed saying that the computation can take a very long
time.

adjust whether to perform intercept adjustment at each step. Since this can be time
consuming, the default is adjust = FALSE.

mcd whether to compute robust distances using Fast-MCD.

qr.out whether to return the QR decomposition (see qr); defaults to false.

yname the name of the dependent variable. Default is yname = NULL

seed initial seed for random generator, like .Random.seed, see rrcov.control.

trace logical (or integer) indicating if intermediate results should be printed; defaults
to FALSE; values ≥ 2 also produce print from the internal (Fortran) code.

use.correction whether to use finite sample correction factors. Default is use.correction=TRUE

wgtFUN a character string or function, specifying how the weights for the reweight-
ing step should be computed. Up to April 2013, the only option has been the
original proposal in (1999), now specified by wgtFUN = "01.original" (or via
control).

control a list with estimation options - same as these provided in the function specifi-
cation. If the control object is supplied, the parameters from it will be used. If
parameters are passed also in the invocation statement, they will override the
corresponding elements of the control object.

... arguments passed to or from other methods.
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Details

The LTS regression method minimizes the sum of the h smallest squared residuals, where h >
n/2, i.e. at least half the number of observations must be used. The default value of h (when
alpha=1/2) is roughly n/2, more precisely, (n+p+1) %/% 2 where n is the total number of obser-
vations, but by setting alpha, the user may choose higher values up to n, where h = h(α, n, p) =
h.alpha.n(alpha,n,p). The LTS estimate of the error scale is given by the minimum of the ob-
jective function multiplied by a consistency factor and a finite sample correction factor – see Pison
et al. (2002) for details. The rescaling factors for the raw and final estimates are returned also in
the vectors raw.cnp2 and cnp2 of length 2 respectively. The finite sample corrections can be sup-
pressed by setting use.correction=FALSE. The computations are performed using the Fast LTS
algorithm proposed by Rousseeuw and Van Driessen (1999).

As always, the formula interface has an implied intercept term which can be removed either by y ~
x - 1 or y ~ 0 + x. See formula for more details.

Value

The function ltsReg returns an object of class "lts". The summary method function is used to
obtain (and print) a summary table of the results, and plot() can be used to plot them, see the the
specific help pages.

The generic accessor functions coefficients, fitted.values and residuals extract various
useful features of the value returned by ltsReg.

An object of class lts is a list containing at least the following components:

crit the value of the objective function of the LTS regression method, i.e., the sum
of the h smallest squared raw residuals.

coefficients vector of coefficient estimates (including the intercept by default when intercept=TRUE),
obtained after reweighting.

best the best subset found and used for computing the raw estimates, with length(best)
== quan = h.alpha.n(alpha,n,p).

fitted.values vector like y containing the fitted values of the response after reweighting.

residuals vector like y containing the residuals from the weighted least squares regression.

scale scale estimate of the reweighted residuals.

alpha same as the input parameter alpha.

quan the number h of observations which have determined the least trimmed squares
estimator.

intercept same as the input parameter intercept.

cnp2 a vector of length two containing the consistency correction factor and the finite
sample correction factor of the final estimate of the error scale.

raw.coefficients

vector of raw coefficient estimates (including the intercept, when intercept=TRUE).

raw.scale scale estimate of the raw residuals.

raw.resid vector like y containing the raw residuals from the regression.

raw.cnp2 a vector of length two containing the consistency correction factor and the finite
sample correction factor of the raw estimate of the error scale.



94 ltsReg

lts.wt vector like y containing weights that can be used in a weighted least squares.
These weights are 1 for points with reasonably small residuals, and 0 for points
with large residuals.

raw.weights vector containing the raw weights based on the raw residuals and raw scale.

method character string naming the method (Least Trimmed Squares).

X the input data as a matrix (including intercept column if applicable).

Y the response variable as a vector.

Author(s)

Valentin Todorov <valentin.todorov@chello.at>, based on work written for S-plus by Peter
Rousseeuw and Katrien van Driessen from University of Antwerp.

References

Peter J. Rousseeuw (1984), Least Median of Squares Regression. Journal of the American Statisti-
cal Association 79, 871–881.

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley.

P. J. Rousseeuw and K. van Driessen (1999) A fast algorithm for the minimum covariance determi-
nant estimator. Technometrics 41, 212–223.

Pison, G., Van Aelst, S., and Willems, G. (2002) Small Sample Corrections for LTS and MCD.
Metrika 55, 111-123.

See Also

covMcd; summary.lts for summaries, lmrob() for alternative robust estimator with HBDP.

The generic functions coef, residuals, fitted.

Examples

data(heart)
## Default method works with 'x'-matrix and y-var:
heart.x <- data.matrix(heart[, 1:2]) # the X-variables
heart.y <- heart[,"clength"]
ltsReg(heart.x, heart.y)

data(stackloss)
ltsReg(stack.loss ~ ., data = stackloss)
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mc Medcouple, a Robust Measure of Skewness

Description

Compute the ‘medcouple’, a robust concept and estimator of skewness. The medcouple is defined
as a scaled median difference of the left and right half of distribution, and hence not based on the
third moment as the classical skewness.

Usage

mc(x, na.rm = FALSE, doReflect = (length(x) <= 100),
doScale = FALSE, # was hardwired=TRUE, then default=TRUE
c.huberize = 1e11, # was implicitly = Inf originally
eps1 = 1e-14, eps2 = 1e-15, # << new in 0.93-2 (2018-07..)
maxit = 100, trace.lev = 0, full.result = FALSE)

Arguments

x a numeric vector
na.rm logical indicating how missing values (NAs) should be dealt with.
doReflect logical indicating if the internal MC should also be computed on the reflected

sample -x, with final result (mc.(x) - mc.(-x))/2. This makes sense since the
internal MC, mc.() computes the himedian() which can differ slightly from the
median.

doScale logical indicating if the internal algorithm should also scale the data (using the
most distant value from the median which is unrobust and numerically danger-
ous); scaling has been hardwired in the original algorithm and R’s mc() till sum-
mer 2018, where it became the default. Since robustbase version 0.95-0, March
2022, the default is FALSE. As this may change the result, a message is printed
about the new default, once per R session. You can suppress the message by
specifying doScale = * explicitly, or, by setting options(mc_doScale_quiet=TRUE).

c.huberize a positive number (default: 1e11) used to stabilize the sample via x <- huberize(x,
c = c.huberize) for the mc() computations in the case of a nearly degenerate
sample (many observations practically equal to the median) or very extreme
outliers. In previous versions of robustbase no such huberization was applied
which is equivalent to c.huberize = Inf.

eps1, eps2 tolerance in the algorithm; eps1 is used as a for convergence tolerance, where
eps2 is only used in the internal h_kern() function to prevent underflow to zero,
so could be considerably smaller. The original code implicitly hard coded in C
eps1 := eps2 := 1e-13; only change with care!

maxit maximal number of iterations; typically a few should be sufficient.
trace.lev integer specifying how much diagnostic output the algorithm (in C) should pro-

duce. No output by default, most output for trace.lev = 5.
full.result logical indicating if the full return values (from C) should be returned as a list

via attr(*, "mcComp").
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Value

a number between -1 and 1, which is the medcouple, MC(x). For r <- mc(x, full.result =
TRUE, ....), then attr(r, "mcComp") is a list with components

medc the medcouple mc.(x).

medc2 the medcouple mc.(−x) if doReflect=TRUE.

eps tolerances used.

iter, iter2 number of iterations used.
converged, converged2

logical specifying “convergence”.

Convergence Problems

For extreme cases there were convergence problems which should not happen anymore as we now
use doScale=FALSE and huberization (when c.huberize < Inf).

The original algorithm and mc(*, doScale=TRUE) not only centers the data around the median but
also scales them by the extremes which may have a negative effect e.g., when changing an extreme
outlier to even more extreme, the result changes wrongly; see the ’mc10x’ example.

Author(s)

Guy Brys; modifications by Tobias Verbeke and bug fixes and extensions by Manuel Koller and
Martin Maechler.

The new default doScale=FALSE, and the new c.huberize were introduced as consequence of
Lukas Graz’ BSc thesis.

References

Guy Brys, Mia Hubert and Anja Struyf (2004) A Robust Measure of Skewness; JCGS 13 (4), 996–
1017.

Hubert, M. and Vandervieren, E. (2008). An adjusted boxplot for skewed distributions, Computa-
tional Statistics and Data Analysis 52, 5186–5201.

Lukas Graz (2021). Improvement of the Algorithms for the Medcoule and the Adjusted Outlying-
ness; unpublished BSc thesis, supervised by M.Maechler, ETH Zurich.

See Also

Qn for a robust measure of scale (aka “dispersion”), ....

Examples

mc(1:5) # 0 for a symmetric sample

x1 <- c(1, 2, 7, 9, 10)
mc(x1) # = -1/3

data(cushny)
mc(cushny) # 0.125
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stopifnot(mc(c(-20, -5, -2:2, 5, 20)) == 0,
mc(x1, doReflect=FALSE) == -mc(-x1, doReflect=FALSE),
all.equal(mc(x1, doReflect=FALSE), -1/3, tolerance = 1e-12))

## Susceptibility of the current algorithm to large outliers :
dX10 <- function(X) c(1:5,7,10,15,25, X) # generate skewed size-10 with 'X'
x <- c(10,20,30, 100^(1:20))
## (doScale=TRUE, c.huberize=Inf) were (implicit) defaults in earlier {robustbase}:
(mc10x <- vapply(x, function(X) mc(dX10(X), doScale=TRUE, c.huberize=Inf), 1))
## limit X -> Inf should be 7/12 = 0.58333... but that "breaks down a bit" :
plot(x, mc10x, type="b", main = "mc( c(1:5,7,10,15,25, X) )", xlab="X", log="x")
## The new behavior is much preferable {shows message about new 'doScale=FALSE'}:
(mc10N <- vapply(x, function(X) mc(dX10(X)), 1))
lines(x, mc10N, col=adjustcolor(2, 3/4), lwd=3)
mtext("mc(*, c.huberize=1e11)", col=2)
stopifnot(all.equal(c(4, 6, rep(7, length(x)-2))/12, mc10N))
## Here, huberization already solves the issue:
mc10NS <- vapply(x, function(X) mc(dX10(X), doScale=TRUE), 1)
stopifnot(all.equal(mc10N, mc10NS))

milk Daudin’s Milk Composition Data

Description

Daudin et al.(1988) give 8 readings on the composition of 86 containers of milk. They speak about
85 observations, but this can be explained with the fact that observations 63 and 64 are identical (as
noted by Rocke (1996)).

The data set was used for analysing the stability of principal component analysis by the bootstrap
method. In the same context, but using high breakdown point robust PCA, these data were analysed
by Todorov et al. (1994). Atkinson (1994) used these data for ilustration of the forward search
algorithm for identifying of multiple outliers.

Usage

data(milk, package="robustbase")

Format

A data frame with 86 observations on the following 8 variables, all but the first measure units in
grams / liter.

X1 density

X2 fat content

X3 protein content

X4 casein content

X5 cheese dry substance measured in the factory
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X6 cheese dry substance measured in the laboratory

X7 milk dry substance

X8 cheese product

Source

Daudin, J.J. Duby, C. and Trecourt, P. (1988) Stability of Principal Component Analysis Studied by
the Bootstrap Method; Statistics 19, 241–258.

References

Todorov, V., Neyko, N., Neytchev, P. (1994) Stability of High Breakdown Point Robust PCA, in
Short Communications, COMPSTAT’94; Physica Verlag, Heidelberg.

Atkinson, A.C. (1994) Fast Very Robust Methods for the Detection of Multiple Outliers. J. Amer.
Statist. Assoc. 89 1329–1339.

Rocke, D. M. and Woodruff, D. L. (1996) Identification of Outliers in Multivariate Data; J. Amer.
Statist. Assoc. 91 (435), 1047–1061.

Examples

data(milk)
(c.milk <- covMcd(milk))
summarizeRobWeights(c.milk $ mcd.wt)# 19..20 outliers
umilk <- unique(milk) # dropping obs.64 (== obs.63)
summary(cumilk <- covMcd(umilk, nsamp = "deterministic")) # 20 outliers

Mpsi Psi / Chi / Wgt / Rho Functions for *M-Estimation

Description

Compute Psi / Chi / Wgt / Rho functions for M-estimation, i.e., including MM, etc. For definitions
and details, please use the vignette “ψ-Functions Available in Robustbase”.

MrhoInf(x) computes ρ(∞), i.e., the normalizing or scaling constant for the transformation from
ρ(·) to ρ̃(·), where the latter, aka as χ() fulfills ρ̃(∞) = 1 which makes only sense for “redescend-
ing” psi functions, i.e., not for "huber".

Mwgt(x, *) computes ψ(x)/x (fast and numerically accurately).

Usage

Mpsi(x, cc, psi, deriv = 0)
Mchi(x, cc, psi, deriv = 0)
Mwgt(x, cc, psi)
MrhoInf(cc, psi)

.Mwgt.psi1(psi, cc = .Mpsi.tuning.default(psi))

.regularize.Mpsi(psi, redescending = TRUE)

https://cran.r-project.org/package=robustbase/vignettes/psi_functions.pdf
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Arguments

x numeric (“abscissa” values) vector, possibly with attributes such as dim or
names, etc. These are preserved for the M*() functions (but not the .M() ones).

cc numeric tuning constant, for some psi of length > 1.

psi a string specifying the psi / chi / rho / wgt function; either "huber", or one
of the same possible specifiers as for psi in lmrob.control, i.e. currently,
"bisquare", "lqq", "welsh", "optimal", "hampel", or "ggw".

deriv an integer, specifying the order of derivative to consider; particularly, Mpsi(x,
*, deriv = -1) is the principal function of ψ(), typically denoted ρ() in the
literature. For some psi functions, currently "huber", "bisquare", "hampel",
and "lqq", deriv = 2 is implemented, for the other psi’s only d ∈ {−1, 0, 1}

redescending logical indicating in .regularize.Mpsi(psi,.) if the psi function is redescend-
ing.

Details

Theoretically, Mchi() would not be needed explicitly as it can be computed from Mpsi() and
MrhoInf(), namely, by

Mchi(x, *, deriv = d) == Mpsi(x, *, deriv = d-1) / MrhoInf(*)

for d = 0, 1, 2 (and ‘*’ containing par, psi, and equality is in the sense of all.equal(x,y, tol)
with a small tol.

Similarly, Mwgt would not be needed strictly, as it could be defined via Mpsi), but the explicit
definition takes care of 0/0 and typically is of a more simple form.

For experts, there are slightly even faster versions, .Mpsi(), .Mwgt(), etc.

.Mwgt.psi1() mainly a utility for nlrob(), returns a function with similar semantics as psi.hampel,
psi.huber, or psi.bisquare from package MASS. Namely, a function with arguments (x, deriv=0),
which for deriv=0 computes Mwgt(x, cc, psi) and otherwise computes Mpsi(x, cc, psi, deriv=deriv).

.Mpsi(), .Mchi(), .Mwgt(), and .MrhoInf() are low-level versions of Mpsi(), Mchi(), Mwgt(),
and MrhoInf(), respectively, and .psi2ipsi() provides the psi-function integer codes needed for
ipsi argument of the .M*() functions.

For psi = "ggw", the ρ() function has no closed form and must be computed via numerical integra-
tion, apart from 6 special cases including the defaults, see the ‘Details’ in help(.psi.ggw.findc).

.Mpsi.regularize() may (rarely) be used to regularize a psi function.

Value

a numeric vector of the same length as x, with corresponding function (or derivative) values.

Author(s)

Manuel Koller, notably for the original C implementation; tweaks and speedup via .Call and .M*()
etc by Martin Maechler.

https://CRAN.R-project.org/package=MASS
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References

See the vignette about “ψ-Functions Available in Robustbase”.

See Also

psiFunc and the psi_func class, both of which provide considerably more on the R side, but are
less optimized for speed.

.Mpsi.tuning.defaults, etc, for tuning constants’ defaults forlmrob(), and .psi.ggw.findc()
utilities to construct such constants’ vectors.

Examples

x <- seq(-5,7, by=1/8)
matplot(x, cbind(Mpsi(x, 4, "biweight"),

Mchi(x, 4, "biweight"),
Mwgt(x, 4, "biweight")), type = "l")

abline(h=0, v=0, lty=2, col=adjustcolor("gray", 0.6))

hampelPsi
(ccHa <- hampelPsi @ xtras $ tuningP $ k)
psHa <- hampelPsi@psi(x)
## using Mpsi():
Mp.Ha <- Mpsi(x, cc = ccHa, psi = "hampel")
stopifnot(all.equal(Mp.Ha, psHa, tolerance = 1e-15))

psi.huber <- .Mwgt.psi1("huber")
if(getRversion() >= "3.0.0")
stopifnot(identical(psi.huber, .Mwgt.psi1("huber", 1.345),

ignore.env=TRUE))
curve(psi.huber(x), -3, 5, col=2, ylim = 0:1)
curve(psi.huber(x, deriv=1), add=TRUE, col=3)

## and show that this is indeed the same as MASS::psi.huber() :
x <- runif(256, -2,3)
stopifnot(all.equal(psi.huber(x), MASS::psi.huber(x)),

all.equal( psi.huber(x, deriv=1),
as.numeric(MASS::psi.huber(x, deriv=1))))

## and how to get MASS::psi.hampel():
psi.hampel <- .Mwgt.psi1("Hampel", c(2,4,8))
x <- runif(256, -4, 10)
stopifnot(all.equal(psi.hampel(x), MASS::psi.hampel(x)),

all.equal( psi.hampel(x, deriv=1),
as.numeric(MASS::psi.hampel(x, deriv=1))))

## "lqq" / "LQQ" and its tuning constants:
ctl0 <- lmrob.control(psi = "lqq", tuning.psi=c(-0.5, 1.5, 0.95, NA))
ctl <- lmrob.control(psi = "lqq", tuning.psi=c(-0.5, 1.5, 0.90, NA))
ctl0$tuning.psi ## keeps the vector _and_ has "constants" attribute:
## [1] -0.50 1.50 0.95 NA
## attr(,"constants")
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## [1] 1.4734061 0.9822707 1.5000000
ctl$tuning.psi ## ditto:
## [1] -0.5 1.5 0.9 NA \ .."constants" 1.213726 0.809151 1.500000
stopifnot(all.equal(Mpsi(0:2, cc = ctl$tuning.psi, psi = ctl$psi),

c(0, 0.977493, 1.1237), tol = 6e-6))
x <- seq(-4,8, by = 1/16)
## Show how you can use .Mpsi() equivalently to Mpsi()
stopifnot(all.equal( Mpsi(x, cc = ctl$tuning.psi, psi = ctl$psi),

.Mpsi(x, ccc = attr(ctl$tuning.psi, "constants"),
ipsi = .psi2ipsi("lqq"))))

stopifnot(all.equal( Mpsi(x, cc = ctl0$tuning.psi, psi = ctl0$psi, deriv=1),
.Mpsi(x, ccc = attr(ctl0$tuning.psi, "constants"),

ipsi = .psi2ipsi("lqq"), deriv=1)))

## M*() preserving attributes :
x <- matrix(x, 32, 8, dimnames=list(paste0("r",1:32), col=letters[1:8]))
comment(x) <- "a vector which is a matrix"
px <- Mpsi(x, cc = ccHa, psi = "hampel")
stopifnot(identical(attributes(x), attributes(px)))

## The "optimal" psi exists in two versions "in the litterature": ---
## Maronna et al. 2006, 5.9.1, p.144f:
psi.M2006 <- function(x, c = 0.013)

sign(x) * pmax(0, abs(x) - c/dnorm(abs(x)))
## and the other is the one in robustbase from 'robust': via Mpsi(.., "optimal")
## Here are both for 95% efficiency:
(c106 <- .Mpsi.tuning.default("optimal"))
c1 <- curve(Mpsi(x, cc = c106, psi="optimal"), -5, 7, n=1001)
c2 <- curve(psi.M2006(x), add=TRUE, n=1001, col=adjustcolor(2,0.4), lwd=2)
abline(0,1, v=0, h=0, lty=3)
## the two psi's are similar, but really quite different

## a zoom into Maronna et al's:
c3 <- curve(psi.M2006(x), -.5, 1, n=1001); abline(h=0,v=0, lty=3);abline(0,1, lty=2)

nlrob Robust Fitting of Nonlinear Regression Models

Description

nlrob fits a nonlinear regression model by robust methods. Per default, by an M-estimator, using
iterated reweighted least squares (called “IRLS” or also “IWLS”).

Usage

nlrob(formula, data, start, lower, upper,
weights = NULL, na.action = na.fail,
method = c("M", "MM", "tau", "CM", "mtl"),
psi = .Mwgt.psi1("huber", cc=1.345), scale = NULL,



102 nlrob

test.vec = c("resid", "coef", "w"), maxit = 20,
tol = 1e-06, acc, algorithm = "default", doCov = FALSE, model = FALSE,
control = if(method == "M") nls.control() else

nlrob.control(method, optArgs = list(trace=trace), ...),
trace = FALSE, ...)

## S3 method for class 'nlrob'
fitted(object, ...)
## S3 method for class 'nlrob'
residuals(object, type = , ...)
## S3 method for class 'nlrob'
predict(object, newdata, ...)

Arguments

formula a nonlinear formula including variables and parameters of the model, such as
y ~ f(x, theta) (cf. nls). (For some checks: if f(.) is linear, then we need
parentheses, e.g., y ~ (a + b * x); (note that ._nlrob.w is not allowed as vari-
able or parameter name))

data an optional data frame containing the variables in the model. If not found in
data, the variables are taken from environment(formula), typically the envi-
ronment from which nlrob is called.

start a named numeric vector of starting parameters estimates, only for method = "M".

lower, upper numeric vectors of lower and upper bounds; if needed, will be replicated to be as
long as the longest of start, lower or upper. For (the default) method = "M",
if the bounds are unspecified all parameters are assumed to be unconstrained;
also, for method "M", bounds can only be used with the "port" algorithm. They
are ignored, with a warning, in cases they have no effect.
For all other methods, currently these bounds must be specified as finite values,
and one of them must have names matching the parameter names in formula.
For methods "CM" and "mtl", the bounds must additionally have an entry named
"sigma" as that is determined simultaneously in the same optimization, and
hence its lower bound must not be negative.

weights an optional vector of weights to be used in the fitting process (for intrinsic
weights, not the weights w used in the iterative (robust) fit). I.e., sum(w * e^2)
is minimized with e = residuals, ei = yi − f(xregi, θ), where f(x, θ) is the
nonlinear function, and w are the robust weights from resid * weights.

na.action a function which indicates what should happen when the data contain NAs. The
default action is for the procedure to fail. If NAs are present, use na.exclude
to have residuals with length == nrow(data) == length(w), where w are the
weights used in the iterative robust loop. This is better if the explanatory vari-
ables in formula are time series (and so the NA location is important). For this
reason, na.omit, which leads to omission of cases with missing values on any
required variable, is not suitable here since the residuals length is different from
nrow(data) == length(w).

method a character string specifying which method to use. The default is "M", for his-
torical and back-compatibility reasons. For the other methods, primarily see
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nlrob.algorithms.

"M" Computes an M-estimator, using nls(*, weights=*) iteratively (hence,
IRLS) with weights equal to ψ(ri)/ri, where ri is the i-the residual from
the previous fit.

"MM" Computes an MM-estimator, starting from init, either "S" or "lts".
"tau" Computes a Tau-estimator.
"CM" Computes a “Constrained M” (=: CM) estimator.
"mtl" Compute as “Maximum Trimmed Likelihood” (=: MTL) estimator.

Note that all methods but "M" are “random”, hence typically to be preceded by
set.seed() in usage, see also nlrob.algorithms.

psi a function (possibly by name) of the form g(x, 'tuning constant(s)', deriv)
that for deriv=0 returns ψ(x)/x and for deriv=1 returns ψ′(x). Note that tun-
ing constants can not be passed separately, but directly via the specification of
psi, typically via a simple .Mwgt.psi1() call as per default.
Note that this has been a deliberately non-backcompatible change for robustbase
version 0.90-0 (summer 2013 – early 2014).

scale when not NULL (default), a positive number specifying a scale kept fixed during
the iterations (and returned as Scale component).

test.vec character string specifying the convergence criterion. The relative change is
tested for residuals with a value of "resid" (the default), for coefficients with
"coef", and for weights with "w".

maxit maximum number of iterations in the robust loop.

tol non-negative convergence tolerance for the robust fit.

acc previous name for tol, now deprecated.

algorithm character string specifying the algorithm to use for nls, see there, only when
method = "M". The default algorithm is a Gauss-Newton algorithm.

doCov a logical specifying if nlrob() should compute the asymptotic variance-covariance
matrix (see vcov) already. This used to be hard-wired to TRUE; however, the de-
fault has been set to FALSE, as vcov(obj) and summary(obj) can easily com-
pute it when needed.

model a logical indicating if the model.frame should be returned as well.

control an optional list of control settings.

for method = "M": settings for nls(). See nls.control for the names of the
settable control values and their effect.

for all methods but "M": a list, typically resulting from nlrob.control(method,
*).

trace logical value indicating if a “trace” of the nls iteration progress should be
printed. Default is FALSE.
If TRUE, in each robust iteration, the residual sum-of-squares and the parameter
values are printed at the conclusion of each nls iteration. When the "plinear"
algorithm is used, the conditional estimates of the linear parameters are printed
after the nonlinear parameters.

object an R object of class "nlrob", typically resulting from nlrob(..).
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... for nlrob: only when method is not "M", optional arguments for nlrob.control;
for other functions: potentially optional arguments passed to the extractor meth-
ods.

type a string specifying the type of residuals desired. Currently, "response" and
"working" are supported.

newdata a data frame (or list) with the same names as the original data, see e.g., predict.nls.

Details

For method = "M", iterated reweighted least squares (“IRLS” or “IWLS”) is used, calling nls(*,
weights= .) where weights wi are proportional to ψ(ri/σ̂).

All other methods minimize differently, and work without nls. See nlrob.algorithms for details.

Value

nlrob() returns an object of S3 class "nlrob", for method = "M" also inheriting from class "nls",
(see nls).

It is a list with several components; they are not documented yet, as some of them will proba-
bly change. Instead, rather use “accessor” methods, where possible: There are methods (at least)
for the generic accessor functions summary(), coefficients() (aka coef()) fitted.values(),
residuals(), sigma() and vcov(), the latter for the variance-covariance matrix of the estimated
parameters, as returned by coef(), i.e., not including the variance of the errors. For nlrob() re-
sults, estimethod() returns the “estimation method”, which coincides with the method argument
used.

residuals(.), by default type = "response", returns the residuals ei, defined above as ei =
Yi − f(xi, θ̂). These differ from the standardized or weighted residuals which, e.g., are assumed to
be normally distributed, and a version of which is returned in working.residuals component.

Note

This function (with the only method "M") used to be named rnls and has been in package sfsmisc
in the past, but been dropped there.

Author(s)

method = "M": Andreas Ruckstuhl (inspired by rlm() and nls()), in July 1994 for S-plus.
Christian Sangiorgio did the update to R and corrected some errors, from June 2002 to January
2005, and Andreas contributed slight changes and the first methods in August 2005.

method = "MM", etc: Originally all by Eduardo L. T. Conceicao, see nlrob.algorithms:

Since then, the help page, testing, more cleanup, new methods: Martin Maechler.

See Also

nls, rlm.

https://CRAN.R-project.org/package=sfsmisc
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Examples

DNase1 <- DNase[ DNase$Run == 1, ]

## note that selfstarting models don't work yet % <<< FIXME !!!

##--- without conditional linearity ---

## classical
fmNase1 <- nls( density ~ Asym/(1 + exp(( xmid - log(conc) )/scal ) ),

data = DNase1,
start = list( Asym = 3, xmid = 0, scal = 1 ),
trace = TRUE )

summary( fmNase1 )

## robust
RmN1 <- nlrob( density ~ Asym/(1 + exp(( xmid - log(conc) )/scal ) ),

data = DNase1, trace = TRUE,
start = list( Asym = 3, xmid = 0, scal = 1 ))

summary( RmN1 )

##--- using conditional linearity ---

## classical
fm2DNase1 <- nls( density ~ 1/(1 + exp(( xmid - log(conc) )/scal ) ),

data = DNase1,
start = c( xmid = 0, scal = 1 ),
alg = "plinear", trace = TRUE )

summary( fm2DNase1 )

## robust
frm2DNase1 <- nlrob(density ~ 1/(1 + exp(( xmid - log(conc) )/scal ) ),

data = DNase1, start = c( xmid = 0, scal = 1 ),
alg = "plinear", trace = TRUE )

summary( frm2DNase1 )
## Confidence for linear parameter is quite smaller than "Asym" above
c1 <- coef(summary(RmN1))
c2 <- coef(summary(frm2DNase1))
rownames(c2)[rownames(c2) == ".lin"] <- "Asym"
stopifnot(all.equal(c1[,1:2], c2[rownames(c1), 1:2], tol = 0.09)) # 0.07315

### -- new examples -- "moderate outlier":
DN2 <- DNase1
DN2[10,"density"] <- 2*DN2[10,"density"]

fm3DN2 <- nls(density ~ Asym/(1 + exp(( xmid - log(conc) )/scal ) ),
data = DN2, trace = TRUE,
start = list( Asym = 3, xmid = 0, scal = 1 ))

## robust
Rm3DN2 <- nlrob(density ~ Asym/(1 + exp(( xmid - log(conc) )/scal ) ),

data = DN2, trace = TRUE,
start = list( Asym = 3, xmid = 0, scal = 1 ))
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Rm3DN2
summary(Rm3DN2) # -> robustness weight of obs. 10 ~= 0.037
confint(Rm3DN2, method = "Wald")
stopifnot(identical(Rm3DN2$dataClasses,

c(density = "numeric", conc = "numeric")))

## utility function sfsmisc::lseq() :
lseq <- function (from, to, length)

2^seq(log2(from), log2(to), length.out = length)
## predict() {and plot}:
h.x <- lseq(min(DN2$conc), max(DN2$conc), length = 100)
nDat <- data.frame(conc = h.x)

h.p <- predict(fm3DN2, newdata = nDat)# classical
h.rp <- predict(Rm3DN2, newdata = nDat)# robust

plot(density ~ conc, data=DN2, log="x",
main = format(formula(Rm3DN2)))

lines(h.x, h.p, col="blue")
lines(h.x, h.rp, col="magenta")
legend("topleft", c("classical nls()", "robust nlrob()"),

lwd = 1, col= c("blue", "magenta"), inset = 0.05)

## See ?nlrob.algorithms for examples

DNase1 <- DNase[DNase$Run == 1,]
form <- density ~ Asym/(1 + exp(( xmid -log(conc) )/scal ))
gMM <- nlrob(form, data = DNase1, method = "MM",

lower = c(Asym = 0, xmid = 0, scal = 0),
upper = 3, trace = TRUE)

## "CM" (and "mtl") additionally need bounds for "sigma" :
gCM <- nlrob(form, data = DNase1, method = "CM",

lower = c(Asym = 0, xmid = 0, scal = 0, sigma = 0),
upper = c(3,3,3, sigma = 0.8))

summary(gCM)# did fail; note it has NA NA NA (std.err, t val, P val)
stopifnot(identical(Rm3DN2$dataClasses, gMM$dataClasses),

identical( gCM$dataClasses, gMM$dataClasses))

nlrob-algorithms MM-, Tau-, CM-, and MTL- Estimators for Nonlinear Robust Regres-
sion

Description

"MM": Compute an MM-estimator for nonlinear robust (constrained) regression.

"tau": Compute a Tau-estimator for nonlinear robust (constrained) regression.

"CM": Compute a “Constrained M” (=: CM) estimator for nonlinear robust (constrained) regres-
sion.
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"MTL": Compute a “Maximum Trimmed Likelihood” (=: MTL) estimator for nonlinear robust
(constrained) regression.

Usage

## You can *not* call the nlrob(*, method = <M>) like this ==> see help(nlrob)
## ------- ===== ------------------------------------------

nlrob.MM(formula, data, lower, upper,
tol = 1e-06,
psi = c("bisquare", "lqq", "optimal", "hampel"),

init = c("S", "lts"),
ctrl = nlrob.control("MM", psi = psi, init = init, fnscale = NULL,

tuning.chi.scale = .psi.conv.cc(psi, .Mchi.tuning.defaults[[psi]]),
tuning.psi.M = .psi.conv.cc(psi, .Mpsi.tuning.defaults[[psi]]),
optim.control = list(), optArgs = list(...)),

...)

nlrob.tau(formula, data, lower, upper,
tol = 1e-06, psi = c("bisquare", "optimal"),
ctrl = nlrob.control("tau", psi = psi, fnscale = NULL,

tuning.chi.scale = NULL, tuning.chi.tau = NULL,
optArgs = list(...)),
...)

nlrob.CM(formula, data, lower, upper,
tol = 1e-06,
psi = c("bisquare", "lqq", "welsh", "optimal", "hampel", "ggw"),
ctrl = nlrob.control("CM", psi = psi, fnscale = NULL,

tuning.chi = NULL, optArgs = list(...)),
...)

nlrob.mtl(formula, data, lower, upper,
tol = 1e-06,
ctrl = nlrob.control("mtl", cutoff = 2.5, optArgs = list(...)),
...)

Arguments

formula nonlinear regression formula, using both variable names from data and param-
eter names from either lower or upper.

data data to be used, a data.frame

lower, upper bounds aka “box constraints” for all the parameters, in the case "CM" and "mtl"
these must include the error standard deviation as "sigma", see nlrob() about
its names, etc.
Note that one of these two must be a properly “named”, e.g., names(lower)
being a character vector of parameter names (used in formula above).

tol numerical convergence tolerance.
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psi, init see nlrob.control.

ctrl a list, typically the result of a call to nlrob.control.

tuning.psi.M ..

optim.control ..

optArgs a list of optional arguments for optimization, e.g., trace = TRUE, passed to to
the optimizer, which currently must be JDEoptim(.).

... alternative way to pass the optArgs above.

Details

Copyright 2013, Eduardo L. T. Conceicao. Available under the GPL (>= 2)

Currently, all four methods use JDEoptim() from DEoptimR, which subsamples using sample().
From R version 3.6.0, sample depends on RNGkind(*, sample.kind), such that exact repro-
ducibility of results from R versions 3.5.3 and earlier requires setting RNGversion("3.5.0"). In
any case, do use set.seed() additionally for reproducibility!

Value

an R object of class "nlrob.<meth>", basically a list with components

Author(s)

Eduardo L. T. Conceicao; compatibility (to nlrob) tweaks and generalizations, inference, by Martin
Maechler.

Source

For "MTL": Maronna, Ricardo A., Martin, R. Douglas, and Yohai, Victor J. (2006). Robust Statis-
tics: Theory and Methods Wiley, Chichester, p. 133.

References

"MM": Yohai, V.J. (1987) High breakdown-point and high efficiency robust estimates for regres-
sion. The Annals of Statistics 15, 642–656.

"tau": Yohai, V.J., and Zamar, R.H. (1988). High breakdown-point estimates of regression by
means of the minimization of an efficient scale. Journal of the American Statistical Associa-
tion 83, 406–413.

"CM": Mendes, B.V.M., and Tyler, D.E. (1996) Constrained M-estimation for regression.
In: Robust Statistics, Data Analysis and Computer Intensive Methods, Lecture Notes in Statis-
tics 109, Springer, New York, 299–320.

"MTL": Hadi, Ali S., and Luceno, Alberto (1997). Maximum trimmed likelihood estimators: a
unified approach, examples, and algorithms. Computational Statistics & Data Analysis 25,
251–272.
Gervini, Daniel, and Yohai, Victor J. (2002). A class of robust and fully efficient regression
estimators. The Annals of Statistics 30, 583–616.

https://CRAN.R-project.org/package=DEoptimR
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Examples

DNase1 <- DNase[DNase$Run == 1,]
form <- density ~ Asym/(1 + exp(( xmid -log(conc) )/scal ))
pnms <- c("Asym", "xmid", "scal")
set.seed(47) # as these by default use randomized optimization:

fMM <- robustbase:::nlrob.MM(form, data = DNase1,
lower = setNames(c(0,0,0), pnms), upper = 3,
## call to nlrob.control to pass 'optim.control':
ctrl = nlrob.control("MM", optim.control = list(trace = 1),

optArgs = list(trace = TRUE)))

## The same via nlrob() {recommended; same random seed to necessarily give the same}:
set.seed(47)
gMM <- nlrob(form, data = DNase1, method = "MM",

lower = setNames(c(0,0,0), pnms), upper = 3, trace = TRUE)
gMM
summary(gMM)
## and they are the same {apart from 'call' and 'ctrl' and new stuff in gMM}:
ni <- names(fMM); ni <- ni[is.na(match(ni, c("call","ctrl")))]
stopifnot(all.equal(fMM[ni], gMM[ni]))

nlrob.control Control Nonlinear Robust Regression Algorithms

Description

Allow the user to specify details for the different nonlinear robust regression algorithms in nlrob.

Usage

nlrob.control(method,
psi = c("bisquare", "lqq", "welsh", "optimal", "hampel", "ggw"),
init = c("S", "lts"),
optimizer = "JDEoptim", optArgs = list(),
...)

Arguments

method character string specifying the method

psi string specifying the psi-function which defines the estimator.

init for some methods, currently, "MM" only, a string specifying the initial estimator.

optimizer currently only "JDEoptim" from package DEoptimR.

optArgs a list of optional arguments to the optimizer. Currently, that is JDEoptim from
package DEoptimR.

https://CRAN.R-project.org/package=DEoptimR
https://CRAN.R-project.org/package=DEoptimR
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... optional arguments depending on method, such as fnscale, tuning.chi or both
tuning.chi.tau and tuning.chi.scale; for method = "MM" also optim.control
to be passed to the optim(.., hessian=TRUE) call. Internally, nlrob.control()
will choose (or check) defaults for the psi/rho/chi related tuning parameters, also
depending on the method chosen; see e.g., the ‘Examples’.

Value

a list with several named components. The contents depend quite a bit on the method.

See Also

nlrob; for some details, nlrob.algorithms.

Examples

## Show how the different 'method's have different smart defaults :
str(nlrob.control("MM"))
str(nlrob.control("MM", psi = "hampel"))# -> other tuning.psi.M and tuning.chi.scale defaults
str(nlrob.control("MM", psi = "lqq", tol = 1e-10))# other tuning.psi.M & tuning.chi.scale defaults
str(nlrob.control("tau"))
str(nlrob.control("tau",psi= "lqq"))
str(nlrob.control("CM")) # tuning.chi undefined, unneeded
str(nlrob.control("CM", psi= "optimal"))
str(nlrob.control("mtl"))

NOxEmissions NOx Air Pollution Data

Description

A typical medium sized environmental data set with hourly measurements of NOx pollution con-
tent in the ambient air.

Usage

data(NOxEmissions, package="robustbase")

Format

A data frame with 8088 observations on the following 4 variables.

julday day number, a factor with levels 373 . . .730, typically with 24 hourly measurements.

LNOx log of hourly mean of NOx concentration in ambient air [ppb] next to a highly frequented
motorway.

LNOxEm log of hourly sum of NOx emission of cars on this motorway in arbitrary units.

sqrtWS Square root of wind speed [m/s].
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Details

The original data set had more observations, but with missing values. Here, all cases with missing
values were omitted (na.omit(.)), and then only those were retained that belonged to days with at
least 20 (fully) observed hourly measurements.

Source

René Locher (at ZHAW, Switzerland).

See Also

another NOx dataset, ambientNOxCH.

Examples

data(NOxEmissions)
plot(LNOx ~ LNOxEm, data = NOxEmissions, cex = 0.25, col = "gray30")

## Not run: ## these take too much time --
## p = 340 ==> already Least Squares is not fast
(lmNOx <- lm(LNOx ~ . ,data = NOxEmissions))
plot(lmNOx) #-> indication of 1 outlier

M.NOx <- MASS::rlm(LNOx ~ . , data = NOxEmissions)
## M-estimation works
## whereas MM-estimation fails:
try(MM.NOx <- MASS::rlm(LNOx ~ . , data = NOxEmissions, method = "MM"))
## namely because S-estimation fails:
try(lts.NOx <- ltsReg(LNOx ~ . , data = NOxEmissions))
try(lmR.NOx <- lmrob (LNOx ~ . , data = NOxEmissions))

## End(Not run)

outlierStats Robust Regression Outlier Statistics

Description

Simple statistics about observations with robustness weight of almost zero for models that include
factor terms. The number of rejected observations and the mean robustness weights are computed
for each level of each factor included in the model.

Usage

outlierStats(object, x = object$x, control = object$control
, epsw = control$eps.outlier
, epsx = control$eps.x
, warn.limit.reject = control$warn.limit.reject
, warn.limit.meanrw = control$warn.limit.meanrw
, shout = NA)
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Arguments

object object of class "lmrob", typically the result of a call to lmrob.

x design matrix

control list as returned by lmrob.control().

epsw limit on the robustness weight below which an observation is considered to be
an outlier. Either a numeric(1) or a function that takes the number of obser-
vations as an argument.

epsx limit on the absolute value of the elements of the design matrix below which
an element is considered zero. Either a numeric(1) or a function that takes the
maximum absolute value in the design matrix as an argument.

warn.limit.reject

limit of ratio #rejected/#obs in level above (≥) which a warning is produced.
Set to NULL to disable warning.

warn.limit.meanrw

limit of the mean robustness per factor level below which (≤) a warning is pro-
duced. Set to NULL to disable warning.

shout a logical (scalar) indicating if large "Ratio" or small "Mean.RobWeight"
should lead to corresponding warning()s; cutoffs are determined by warn.limit.reject
and warn.limit.meanrw, above. By default, NA; setting it to FALSE or TRUE dis-
ables or unconditionally enables “shouting”.

Details

For models that include factors, the fast S-algorithm used by lmrob can produce “bad” fits for some
of the factor levels, especially if there are many levels with only a few observations. Such a “bad”
fit is characterized as a fit where most of the observations in a level of a factor are rejected, i.e., are
assigned robustness weights of zero or nearly zero. We call such a fit a “local exact fit”.

If a local exact fit is detected, then we recommend to increase some of the control parameters of the
“fast S”-algorithm. As a first aid solution in such cases, one can use setting="KS2014", see also
lmrob.control.

This function is called internally by lmrob to issue a warning if a local exact fit is detected. The
output is available as ostats in objects of class "lmrob" (only if the statistic is computed).

Value

A data frame for each column with any zero elements as well as an overall statistic. The data
frame consist of the names of the coefficients in question, the number of non-zero observations
in that level (N.nonzero), the number of rejected observations (N.rejected), the ratio of rejected
observations to the number of observations in that level (Ratio) and the mean robustness weight of
all the observations in the corresponding level (Mean.RobWeight).

Author(s)

Manuel Koller
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References

Koller, M. and Stahel, W.A. (2017) Nonsingular subsampling for regression S estimators with cat-
egorical predictors, Computational Statistics 32(2): 631–646. doi:10.1007/s001800160679x

See Also

lmrob.control for the default values of the control parameters; summarizeRobWeights.

Examples

## artificial data example
data <- expand.grid(grp1 = letters[1:5], grp2 = letters[1:5], rep=1:3)
set.seed(101)
data$y <- c(rt(nrow(data), 1))
## compute outlier statistics for all the estimators
control <- lmrob.control(method = "SMDM",

compute.outlier.stats = c("S", "MM", "SMD", "SMDM"))
## warning is only issued for some seeds
set.seed(2)
fit1 <- lmrob(y ~ grp1*grp2, data, control = control)
## do as suggested:
fit2 <- lmrob(y ~ grp1*grp2, data, setting = "KS2014")

## the plot function should work for such models as well
plot(fit1)

## Not run:
## access statistics:
fit1$ostats ## SMDM
fit1$init$ostats ## SMD
fit1$init$init$ostats ## SM
fit1$init$init$init.S$ostats ## S

## End(Not run)

pension Pension Funds Data

Description

The total 1981 premium income of pension funds of Dutch firms, for 18 Professional Branches,
from de Wit (1982).

Usage

data(pension, package="robustbase")

https://doi.org/10.1007/s00180-016-0679-x
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Format

A data frame with 18 observations on the following 2 variables.

Income Premium Income (in millions of guilders)
Reserves Premium Reserves (in millions of guilders)

Source

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, p.76,
table 13.

Examples

data(pension)
plot(pension)

summary(lm.p <- lm(Reserves ~., data=pension))
summary(lmR.p <- lmrob(Reserves ~., data=pension))
summary(lts.p <- ltsReg(Reserves ~., data=pension))
abline( lm.p)
abline(lmR.p, col=2)
abline(lts.p, col=2, lty=2)

## MM: "the" solution is much simpler:
plot(pension, log = "xy")
lm.lp <- lm(log(Reserves) ~ log(Income), data=pension)
lmR.lp <- lmrob(log(Reserves) ~ log(Income), data=pension)
plot(log(Reserves) ~ log(Income), data=pension)
## no difference between LS and robust:
abline( lm.lp)
abline(lmR.lp, col=2)

phosphor Phosphorus Content Data

Description

This dataset investigates the effect from inorganic and organic Phosphorus in the soil upon the
phosphorus content of the corn grown in this soil, from Prescott (1975).

Usage

data(phosphor, package="robustbase")

Format

A data frame with 18 observations on the following 3 variables.

inorg Inorganic soil Phosphorus
organic Organic soil Phosphorus
plant Plant Phosphorus content
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Source

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley, p.156,
table 24.

Examples

data(phosphor)
plot(phosphor)
summary(lm.phosphor <- lm(plant ~ ., data = phosphor))
summary(lts.phosphor <- ltsReg(plant ~ ., data = phosphor))

phosphor.x <- data.matrix(phosphor[, 1:2])
cPh <- covMcd(phosphor.x)
plot(cPh, "dd")

pilot Pilot-Plant Data

Description

Pilot-Plant data from Daniel and Wood (1971). The response variable corresponds to the acid
content determined by titration and the explanatory variable is the organic acid content determined
by extraction and weighing. This data set was analyzed also by Yale and Forsythe (1976).

Usage

data(pilot, package="robustbase")

Format

A data frame with 20 observations on the following 2 variables.

X Organic acid content - extraction

Y Acid content - titration

Source

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, page 21,
table 1.

Examples

data(pilot)
summary(lm.pilot <- lm(Y ~.,data=pilot))
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plot-methods Plot an Object of the "Psi Function" Class

Description

The plot method objects of class psi_func simply visualizes the ρ(), ψ(), and weight functions
and their derivatives.

Usage

## S4 method for signature 'psi_func'
plot(x, y,

which = c("rho", "psi", "Dpsi", "wgt", "Dwgt"),
main = "full",
col = c("black", "red3", "blue3", "dark green", "light green"),
leg.loc = "right", ...)

Arguments

x object of class psi_func to be plotted

y (optional) vector of abscissa values (to plot object at).

which character vector of slots to be included in plot; by default, all of the slots are
included

main string or logical indicating the kind of plot title; either "full", "short" or
FALSE which chooses a full, a short or no main title at all.

col colors to be used for the different slots

leg.loc legend placement, see also x argument of legend

... passed to matplot

Note

An earlier version had argument shortMain which is deprecated now. Use main = "short" instead
of shortMain = TRUE.

If you want to specify your own title, use main=FALSE, and a subsequent title(...) call.

See Also

psiFunc() and the class psi_func.

Examples

plot(huberPsi)
plot(huberPsi, which=c("psi", "Dpsi", "wgt"),

main="short", leg = "topleft")

plot(hampelPsi)
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## Plotting aspect ratio = 1:1 :
plot(hampelPsi, asp=1, main="short",

which = c("psi", "Dpsi", "wgt", "Dwgt"))

plot.lmrob Plot Method for "lmrob" Objects

Description

Diagnostic plots for elements of class lmrob

Usage

## S3 method for class 'lmrob'
plot(x, which = 1:5,

caption = c("Standardized residuals vs. Robust Distances",
"Normal Q-Q vs. Residuals", "Response vs. Fitted Values",
"Residuals vs. Fitted Values" , "Sqrt of abs(Residuals) vs. Fitted Values"),
panel = if(add.smooth) panel.smooth else points,
sub.caption = deparse(x$call), main = "",
compute.MD = TRUE,
ask = prod(par("mfcol")) < length(which) && dev.interactive(),
id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75,
label.pos = c(4,2), qqline = TRUE, add.smooth = getOption("add.smooth"),
..., p=0.025)

Arguments

x an object as created by lmrob

which integer number between 1 and 5 to specify which plot is desired

caption Caption for the different plots

panel panel function. The useful alternative to points, panel.smooth can be chosen
by add.smooth = TRUE.

main main title

sub.caption sub titles

compute.MD logical indicating if the robust Mahalanobis distances should be recomputed,
using covMcd() when needed, i.e., if which contains 1.

ask waits for user input before displaying each plot

id.n number of points to be labelled in each plot, starting with the most extreme.

labels.id vector of labels, from which the labels for extreme points will be chosen. NULL
uses observation numbers.

cex.id magnification of point labels.

label.pos positioning of labels, for the left half and right half of the graph respectively.

qqline logical indicating if a qqline() should be added to the normal Q-Q plot.
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add.smooth logical indicating if a smoother should be added to most plots; see also panel
above.

... optional arguments for par, title, etc.

p threshold for distance-distance plot

Details

if compute.MD = TRUE and the robust Mahalanobis distances need to be computed, they are stored
(“cached”) with the object x when this function has been called from top-level.

References

Robust diagnostic plots as in Rousseeuw and van Zomeren (1990), see ‘References’ in ltsPlot.

See Also

lmrob, also for examples, plot.lm.

Examples

data(starsCYG)
## Plot simple data and fitted lines
plot(starsCYG)
lmST <- lm(log.light ~ log.Te, data = starsCYG)

RlmST <- lmrob(log.light ~ log.Te, data = starsCYG)
RlmST
abline(lmST, col = "red")
abline(RlmST, col = "blue")

op <- par(mfrow = c(2,2), mgp = c(1.5, 0.6, 0), mar= .1+c(3,3,3,1))
plot(RlmST, which = c(1:2, 4:5))
par(op)

plot.lts Robust LTS Regression Diagnostic Plots

Description

Four plots (selectable by which) are currently provided:

1. a plot of the standardized residuals versus their index,

2. a plot of the standardized residuals versus fitted values,

3. a Normal Q-Q plot of the standardized residuals, and

4. a regression diagnostic plot (standardized residuals versus robust distances of the predictor
variables).
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Usage

## S3 method for class 'lts'
plot(x, which = c("all","rqq","rindex","rfit","rdiag"),

classic=FALSE, ask = (which[1] == "all" && dev.interactive()),
id.n, ...)

Arguments

x a lts object, typically result of ltsReg.

which string indicating which plot to show. See the Details section for a description of
the options. Defaults to "all".

.

classic whether to plot the classical distances too. Default is FALSE.

.

ask logical indicating if the user should be asked before each plot, see par(ask=.).
Defaults to which == "all" && dev.interactive().

id.n number of observations to be identified by a label starting with the most extreme.
Default is the number of identified outliers (can be different for the different
plots - see Details).

... other parameters to be passed through to plotting functions.

Details

This function produces several plots based on the robust and classical regression estimates. Which
of them to select is specified by the attribute which. The possible options are:

rqq: Normal Q-Q plot of the standardized residuals;

rindex: plot of the standardized residuals versus their index;

rfit: plot of the standardized residuals versus fitted values;

rdiag: regression diagnostic plot.

The normal quantile plot produces a normal Q-Q plot of the standardized residuals. A line is drawn
which passes through the first and third quantile. The id.n residuals with largest distances from
this line are identified by labels (the observation number). The default for id.n is the number of
regression outliers (lts.wt==0).

In the Index plot and in the Fitted values plot the standardized residuals are displayed against the
observation number or the fitted value respectively. A horizontal dashed line is drawn at 0 and two
solid horizontal lines are located at +2.5 and -2.5. The id.n residuals with largest absolute values are
identified by labels (the observation number). The default for id.n is the number regression outliers
(lts.wt==0).

The regression diagnostic plot, introduced by Rousseeuw and van Zomeren (1990), displays the
standardized residuals versus robust distances. Following Rousseeuw and van Zomeren (1990), the
horizontal dashed lines are located at +2.5 and -2.5 and the vertical line is located at the upper 0.975
percent point of the chi-squared distribution with p degrees of freedom. The id.n residuals with
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largest absolute values and/or largest robust Mahalanobis distances are identified by labels (the ob-
servation number). The default for id.n is the number of all outliers: regression outliers (lts.wt==0)
+ leverage (bad and good) points (RD > 0.975 percent point of the chi-squared distribution with p
degrees of freedom).

References

P. J. Rousseeuw and van Zomeren, B. C. (1990). Unmasking Multivariate Outliers and Leverage
Points. Journal of the American Statistical Association 85, 633–639.

P. J. Rousseeuw and K. van Driessen (1999) A fast algorithm for the minimum covariance determi-
nant estimator. Technometrics 41, 212–223.

See Also

covPlot

Examples

data(hbk)
lts <- ltsReg(Y ~ ., data = hbk)
lts
plot(lts, which = "rqq")

plot.mcd Robust Distance Plots

Description

Shows the Mahalanobis distances based on robust and classical estimates of the location and the
covariance matrix in different plots. The following plots are available:

• index plot of the robust and mahalanobis distances

• distance-distance plot

• Chisquare QQ-plot of the robust and mahalanobis distances

• plot of the tolerance ellipses (robust and classic)

• Scree plot - Eigenvalues comparison plot

Usage

## S3 method for class 'mcd'
plot(x,

which = c("all", "dd", "distance", "qqchi2",
"tolEllipsePlot", "screeplot"),

classic = FALSE, ask = (which[1] == "all" && dev.interactive()),
cutoff, id.n, labels.id = rownames(x$X), cex.id = 0.75,
label.pos = c(4,2), tol = 1e-7, ...)
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covPlot(x,
which = c("all", "dd", "distance", "qqchi2",

"tolEllipsePlot", "screeplot"),
classic = FALSE, ask = (which[1] == "all" && dev.interactive()),
m.cov = covMcd(x),
cutoff = NULL, id.n, labels.id = rownames(x), cex.id = 0.75,
label.pos = c(4,2), tol = 1e-07, ...)

Arguments

x For the plot() method, a mcd object, typically result of covMcd.
For covPlot(), the numeric data matrix such as the X component as returned
from covMcd.

which string indicating which plot to show. See the Details section for a description of
the options. Defaults to "all".

.

classic whether to plot the classical distances too. Defaults to FALSE.

.

ask logical indicating if the user should be asked before each plot, see par(ask=.).
Defaults to which == "all" && dev.interactive().

cutoff the cutoff value for the distances.

id.n number of observations to be identified by a label. If not supplied, the number
of observations with distance larger than cutoff is used.

labels.id vector of labels, from which the labels for extreme points will be chosen. NULL
uses observation numbers.

cex.id magnification of point labels.

label.pos positioning of labels, for the left half and right half of the graph respectively
(used as text(.., pos=*)).

tol tolerance to be used for computing the inverse, see solve. Defaults to tol =
1e-7.

m.cov an object similar to those of class "mcd"; however only its components center
and cov will be used. If missing, the MCD will be computed (via covMcd()).

... other parameters to be passed through to plotting functions.

Details

These functions produce several plots based on the robust and classical location and covariance
matrix. Which of them to select is specified by the attribute which. The plot method for "mcd"
objects is calling covPlot() directly, whereas covPlot() should also be useful for plotting other
(robust) covariance estimates. The possible options are:

distance index plot of the robust distances

dd distance-distance plot

qqchi2 a qq-plot of the robust distances versus the quantiles of the chi-squared distribution
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tolEllipsePlot a tolerance ellipse plot, via tolEllipsePlot()

screeplot an eigenvalues comparison plot - screeplot

The Distance-Distance Plot, introduced by Rousseeuw and van Zomeren (1990), displays the robust
distances versus the classical Mahalanobis distances. The dashed line is the set of points where the
robust distance is equal to the classical distance. The horizontal and vertical lines are drawn at
values equal to the cutoff which defaults to square root of the 97.5% quantile of a chi-squared
distribution with p degrees of freedom. Points beyond these lines can be considered outliers.

References

P. J. Rousseeuw and van Zomeren, B. C. (1990). Unmasking Multivariate Outliers and Leverage
Points. Journal of the American Statistical Association 85, 633–639.

P. J. Rousseeuw and K. van Driessen (1999) A fast algorithm for the minimum covariance determi-
nant estimator. Technometrics 41, 212–223.

See Also

tolEllipsePlot

Examples

data(Animals, package ="MASS")
brain <- Animals[c(1:24, 26:25, 27:28),]
mcd <- covMcd(log(brain))

plot(mcd, which = "distance", classic = TRUE)# 2 plots
plot(mcd, which = "dd")
plot(mcd, which = "tolEllipsePlot", classic = TRUE)
op <- par(mfrow = c(2,3))
plot(mcd) ## -> which = "all" (5 plots)
par(op)

## same plots for another robust Cov estimate:
data(hbk)
hbk.x <- data.matrix(hbk[, 1:3])
cOGK <- covOGK(hbk.x, n.iter = 2, sigmamu = scaleTau2,

weight.fn = hard.rejection)
covPlot(hbk.x, m.cov = cOGK, classic = TRUE)

possumDiv Possum Diversity Data
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Description

Possum diversity data: As issued from a study of the diversity of possum (arboreal marsupials) in the
Montane ash forest (Australia), this dataset was collected in view of the management of hardwood
forest to take conservation and recreation values, as well as wood production, into account.

The study is fully described in the two references. The number of different species of arboreal
marsupials (possum) was observed on 151 different 3ha sites with uniform vegetation. For each site
the nine variable measures (see below) were recorded. The problem is to model the relationship
between diversity and these other variables.

Usage

data(possumDiv, package="robustbase")

Format

Two different representations of the same data are available:

possumDiv is a data frame of 151 observations of 9 variables, where the last two are factors,
eucalyptus with 3 levels and aspect with 4 levels.

possum.mat is a numeric (integer) matrix of 151 rows (observations) and 14 columns (variables)
where the last seven ones are 0-1 dummy variables, three (E.*) are coding for the kind of eucalyptus
and the last four are 0-1 coding for the aspect factor.

The variables have the following meaning:

Diversity main variable of interest is the number of different species of arboreal marsupial (pos-
sum) observed, with values in 0:5.

Shrubs the number of shrubs.
Stumps the number of cut stumps from past logging operations.
Stags the number of stags (hollow-bearing trees).
Bark bark index (integer) vector reflecting the quantity of decorticating bark.
Habitat an integer score indicating the suitability of nesting and foraging habitat for Leadbeater’s

possum.
BAcacia a numeric vector giving the basal area of acacia species.

eucalyptus a 3-level factor specifying the species of eucalypt with the greatest stand basal area.
This has the same information as the following three variables

E.regnans 0-1 indicator for Eucalyptus regnans
E.delegatensis 0-1 indicator for Eucalyptus deleg.
E.nitens 0-1 indicator for Eucalyptus nitens

aspect a 4-level factor specifying the aspect of the site. It is the same information as the following
four variables.

NW-NE 0-1 indicator
NW-SE 0-1 indicator
SE-SW 0-1 indicator
SW-NW 0-1 indicator
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Source

Eva Cantoni (2004) Analysis of Robust Quasi-deviances for Generalized Linear Models. Journal
of Statistical Software 10, 04, https://www.jstatsoft.org/article/view/v010i04

References

Lindenmayer, D. B., Cunningham, R. B., Tanton, M. T., Nix, H. A. and Smith, A. P. (1991) The
conservation of arboreal marsupials in the montane ash forests of the central highlands of victoria,
south-east australia: III. The habitat requirements of leadbeater’s possum gymnobelideus leadbeat-
eri and models of the diversity and abundance of arboreal marsupials. Biological Conservation 56,
295–315.

Lindenmayer, D. B., Cunningham, R. B., Tanton, M. T., Smith, A. P. and Nix, H. A. (1990) The
conservation of arboreal marsupials in the montane ash forests of the victoria, south-east australia,
I. Factors influencing the occupancy of trees with hollows, Biological Conservation 54, 111–131.

See also the references in glmrob.

Examples

data(possumDiv)
head(possum.mat)

str(possumDiv)
## summarize all variables as multilevel factors:
summary(as.data.frame(lapply(possumDiv, function(v)

if(is.integer(v)) factor(v) else v)))

## Following Cantoni & Ronchetti (2001), JASA, p.1026 f.:% cf. ../tests/poisson-ex.R
pdFit <- glmrob(Diversity ~ . , data = possumDiv,

family=poisson, tcc = 1.6, weights.on.x = "hat", acc = 1e-15)
summary(pdFit)
summary(pdF2 <- update(pdFit, ~ . -Shrubs))
summary(pdF3 <- update(pdF2, ~ . -eucalyptus))
summary(pdF4 <- update(pdF3, ~ . -Stumps))
summary(pdF5 <- update(pdF4, ~ . -BAcacia))
summary(pdF6 <- update(pdF5, ~ . -aspect))# too much ..
anova(pdFit, pdF3, pdF4, pdF5, pdF6, test = "QD") # indeed,
## indeed, the last simplification is too much
possumD.2 <- within(possumDiv, levels(aspect)[1:3] <- rep("other", 3))
## and use this binary 'aspect' instead of the 4-level one:
summary(pdF5.1 <- update(pdF5, data = possumD.2))

if(FALSE) # not ok, as formually not nested.
anova(pdF5, pdF5.1)

summarizeRobWeights(weights(pdF5.1, type="rob"), eps = 0.73)
##-> "outliers" (1, 59, 110)
wrob <- setNames(weights(pdF5.1, type="rob"), rownames(possumDiv))
head(sort(wrob))

https://www.jstatsoft.org/article/view/v010i04
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predict.glmrob Predict Method for Robust GLM ("glmrob") Fits

Description

Obtains predictions and optionally estimates standard errors of those predictions from a fitted robust
generalized linear model (GLM) object.

Usage

## S3 method for class 'glmrob'
predict(object, newdata = NULL,

type = c("link", "response", "terms"), se.fit = FALSE,
dispersion = NULL, terms = NULL, na.action = na.pass, ...)

Arguments

object a fitted object of class inheriting from "glmrob".

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the fitted linear predictors are used.

type the type of prediction required. The default is on the scale of the linear predic-
tors; the alternative "response" is on the scale of the response variable. Thus
for a default binomial model the default predictions are of log-odds (probabil-
ities on logit scale) and type = "response" gives the predicted probabilities.
The "terms" option returns a matrix giving the fitted values of each term in the
model formula on the linear predictor scale.
The value of this argument can be abbreviated.

se.fit logical switch indicating if standard errors are required.

dispersion the dispersion of the GLM fit to be assumed in computing the standard errors.
If omitted, that returned by summary applied to the object is used.

terms with type="terms" by default all terms are returned. A character vector speci-
fies which terms are to be returned

na.action function determining what should be done with missing values in newdata. The
default is to predict NA.

... optional further arguments, currently simply passed to predict.lmrob().

Value

If se = FALSE, a vector or matrix of predictions. If se = TRUE, a list with components

fit Predictions

se.fit Estimated standard errors

residual.scale A scalar giving the square root of the dispersion used in computing the standard
errors.
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Author(s)

Andreas Ruckstuhl

See Also

glmrob() to fit these robust GLM models, residuals.glmrob() and other methods; predict.lm(),
the method used for a non-robust fit.

Examples

data(carrots)
## simplistic testing & training:
i.tr <- sample(24, 20)
fm1 <- glmrob(cbind(success, total-success) ~ logdose + block,

family = binomial, data = carrots, subset = i.tr)
fm1
predict(fm1, carrots[-i.tr, ]) # --> numeric vector
predict(fm1, carrots[-i.tr, ],

type="response", se = TRUE)# -> a list

data(vaso)
Vfit <- glmrob(Y ~ log(Volume) + log(Rate), family=binomial, data=vaso)
newd <- expand.grid(Volume = (V. <- seq(.5, 4, by = 0.5)),

Rate = (R. <- seq(.25,4, by = 0.25)))
p <- predict(Vfit, newd)
filled.contour(V., R., matrix(p, length(V.), length(R.)),

main = "predict(glmrob(., data=vaso))", xlab="Volume", ylab="Rate")

predict.lmrob Predict method for Robust Linear Model ("lmrob") Fits

Description

Predicted values based on robust linear model object.

Usage

## S3 method for class 'lmrob'
predict(object, newdata, se.fit = FALSE,

scale = NULL, df = NULL,
interval = c("none", "confidence", "prediction"), level = 0.95,
type = c("response", "terms"), terms = NULL,
na.action = na.pass, pred.var = res.var/weights, weights = 1, ...)
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Arguments

object object of class inheriting from "lmrob"

newdata an optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

se.fit a switch indicating if standard errors are required.

scale scale parameter for std.err. calculation

df degrees of freedom for scale

interval type of interval calculation.

level tolerance/confidence level

type Type of prediction (response or model term).

terms if type="terms", which terms (default is all terms)

na.action function determining what should be done with missing values in newdata. The
default is to predict NA.

pred.var the variance(s) for future observations to be assumed for prediction intervals.
See ‘Details’.

weights variance weights for prediction. This can be a numeric vector or a one-sided
model formula. In the latter case, it is interpreted as an expression evaluated in
newdata

... further arguments passed to or from other methods.

Details

Note that this lmrob method for predict is closely modeled after the method for lm(), predict.lm,
maybe see there for caveats with missing value treatment. The prediction intervals are for a single
observation at each case in newdata (or by default, the data used for the fit) with error variance(s)
pred.var. This can be a multiple of res.var, the estimated value of σ2: the default is to assume
that future observations have the same error variance as those used for fitting. If weights is sup-
plied, the inverse of this is used as a scale factor. For a weighted fit, if the prediction is for the
original data frame, weights defaults to the weights used for the model fit, with a warning since
it might not be the intended result. If the fit was weighted and newdata is given, the default is to
assume constant prediction variance, with a warning.

Value

predict.lmrob produces a vector of predictions or a matrix of predictions and bounds with column
names fit, lwr, and upr if interval is set. If se.fit is TRUE, a list with the following components
is returned:

fit vector or matrix as above

se.fit standard error of predicted means

residual.scale residual standard deviations

df degrees of freedom for residual
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Author(s)

Andreas Ruckstuhl

See Also

lmrob and the (non-robust) traditional predict.lm method.

Examples

## Predictions --- artificial example -- closely following example(predict.lm)

set.seed(5)
n <- length(x <- sort(c(round(rnorm(25), 1), 20)))
y <- x + rnorm(n)
iO <- c(sample(n-1, 3), n)
y[iO] <- y[iO] + 10*rcauchy(iO)

p.ex <- function(...) {
plot(y ~ x, ...); abline(0,1, col="sky blue")
points(y ~ x, subset=iO, col="red", pch=2)
abline(lm (y ~ x), col = "gray40")
abline(lmrob(y ~ x), col = "forest green")
legend("topleft", c("true", "Least Squares", "robust"),

col = c("sky blue", "gray40", "forest green"), lwd=1.5, bty="n")
}
p.ex()

fm <- lmrob(y ~ x)
predict(fm)
new <- data.frame(x = seq(-3, 10, 0.25))
str(predict(fm, new, se.fit = TRUE))
pred.w.plim <- predict(fm, new, interval = "prediction")
pred.w.clim <- predict(fm, new, interval = "confidence")
pmat <- cbind(pred.w.clim, pred.w.plim[,-1])

matlines(new$x, pmat, lty = c(1,2,2,3,3))# add to first plot
## show zoom-in region :
rect(xleft = -3, ybottom = -20, xright = 10, ytop = 40,

lty = 3, border="orange4")

## now zoom in :
p.ex(xlim = c(-3,10), ylim = c(-20, 40))
matlines(new$x, pmat, lty = c(1,2,2,3,3))
box(lty = 3, col="orange4", lwd=3)
legend("bottom", c("fit", "lwr CI", "upr CI", "lwr Pred.I", "upr Pred.I"),

col = 1:5, lty=c(1,2,2,3,3), bty="n")

## Prediction intervals, special cases
## The first three of these throw warnings
w <- 1 + x^2
fit <- lmrob(y ~ x)
wfit <- lmrob(y ~ x, weights = w)
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predict(fit, interval = "prediction")
predict(wfit, interval = "prediction")
predict(wfit, new, interval = "prediction")
predict(wfit, new, interval = "prediction", weights = (new$x)^2) -> p.w2
p.w2
stopifnot(identical(p.w2, ## the same as using formula:

predict(wfit, new, interval = "prediction", weights = ~x^2)))

print.lmrob Print Method for Objects of Class "lmrob"

Description

Print method for elements of class "lmrob".

Usage

## S3 method for class 'lmrob'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x an R object of class lmrob, typically created by lmrob.

digits number of digits for printing, see digits in options.

... potentially more arguments passed to methods.

See Also

lmrob, summary.lmrob, print and summary.

Examples

data(coleman)
( m1 <- lmrob(Y ~ ., data=coleman) ) # -> print.lmrob() method

psi.findc Find Tuning Constant(s) for "lqq" and "ggw" Psi Functions

Description

Find psi function tuning constant sets for "LQQ" and "GGW" psi (ψ) functions by specifying largest
descent (minimal slope), efficiency and or breakdown point.

.psi.const() is called from lmrob.control() to set the tuning constants for psi and chi for "LQQ"
and "GGW" psi. Unless the specified tuning constants are from fixed small set where the computa-
tions are stored precomputed, .psi.const() calls the corresponding .psi.<psi>.findc().
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Usage

.psi.ggw.findc(ms, b, eff = NA, bp = NA,
subdivisions = 100L,
rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
tol = .Machine$double.eps^0.25, ms.tol = tol/64, maxiter = 1000)

.psi.lqq.findc(ms, b.c, eff = NA, bp = NA,
interval = c(0.1, 4), subdivisions = 100L,
rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
tol = .Machine$double.eps^0.25, maxiter = 1000)

.psi.const(cc, psi)

Arguments

ms number, the minimal slope, typically negative.

b, b.c number, specifying b or b/c for "ggw" or "lqq" respectively.

eff a number (or NA), the desired efficiency, in [0, 1] of the estimator. If NA, bp must
be specified as valid number.

bp a number (or NA), the desired breakdown point of the estimator, in [0, 1].

interval for finding c via uniroot().

subdivisions passed to integrate().
rel.tol, abs.tol

relative and absolute tolerance for integrate().

tol relative tolerance for uniroot().

ms.tol relative tolerance for the internal .psi.ggw.finda(), eventually passed to optimize
inside (internal) .psi.ggw.mxs().

maxiter maximal number of iterations for uniroot().

cc (for .psi.const():) numeric vector of length 4, containing all constants c(ms,
b*, eff, bp), where b* = b for "ggw" and b* = b.c for "lqq", and one of (eff,
bp) is NA.

psi a string, either "ggw" or "lqq".

Details

For some important special cases, the result of .psi.*.findc() are stored precomputed for ef-
ficiency reasons. These cases are (the defaults for tuning.chi and tuning.psi respectively in
lmrob.control()s result,

tuning.chi tuning.psi
c(-0.5, 1.5, NA, 0.5) c(-0.5, 1.5, 0.95, NA)

and for "ggw" additionally, these four cases:

tuning.chi tuning.psi



psi.findc 131

c(-0.5, 1.5, 0.85, NA)
c(-0.5, 1, NA, 0.5) c(-0.5, 1, 0.95, NA)

c(-0.5, 1, 0.85, NA)

Note that for "ggw", exactly these 2 + 4 = 6 cases also allow fast ρ and χ (aka ρ̃(·), see Mchi),
function evaluations. For all other tuning constant settings, rho() evaluations are based on numerical
integration via R’s own Rdqags() C function (part of R’s official API).

Value

a numeric vector of constants, for "lqq" or "ggw" psi functions, respectively:

"lqq": (b, c, s) = (b/c ∗ c, c, s = 1−minslope),

"ggw": (0, a, b, c, ρ(∞)).

.psi.const(cc, psi) returns the argument cc with the above constant vectors as attribute "constants",
in the case of psi = "lqq" in all cases (since robustbase version >= 0.93), for psi = "ggw" only in
the non-standard cases.

Author(s)

Manuel Koller (original) and Martin Maechler (arguments, export, docs).

References

See the vignette about “ψ-Functions Available in Robustbase”.

See Also

Mpsi() etc for the psi function definitions; .Mpsi.tuning.defaults, etc, for tuning constants’
defaults for lmrob().

Examples

(c.ge95 <- .psi.ggw.findc(ms = -0.5, b = 1.5, eff = 0.95))
(c.ge90 <- .psi.ggw.findc(ms = -0.5, b = 1.5, eff = 0.90))
(c.gb50 <- .psi.ggw.findc(ms = -0.5, b = 1.5, bp = 0.50))
stopifnot(all.equal(c.ge95, c(0, 1.386362, 1.5, 1.0628199, 4.7773893), tol = 1e-5),

all.equal(c.ge90, c(0, 1.0282811, 1.5, 0.87086259, 3.2075233), tol = 1e-5),
all.equal(c.gb50, c(0, 0.20367394, 1.5, 0.29591308, 0.37033962),tol = 1e-5))

(cl.e.95 <- .psi.lqq.findc(ms = -0.5, b.c = 1.5, eff = .95))
(cl.b.50 <- .psi.lqq.findc(ms = -0.5, b.c = 1.5, bp = .50))
stopifnot(all.equal(cl.e.95, c(1.4734061, 0.98227073, 1.5), tol = 1e-5),

all.equal(cl.b.50, c(0.40154568, 0.26769712, 1.5), tol = 1e-5))
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psiFunc Constructor for Objects "Psi Function" Class

Description

psiFunc(..) is a convenience interface to new("psi_func",..), i.e. for constructing objects of
class "psi_func".

Usage

psiFunc(rho, psi, wgt, Dpsi,Dwgt, Erho = NULL, Epsi2 = NULL, EDpsi = NULL, name, ...)

huberPsi
hampelPsi

Arguments

rho, psi, wgt, Dpsi, Dwgt
each a function of x and tuning parameters typically. Specification of Dwgt is
optional.

Erho, Epsi2, EDpsi
see psi_func, and note that these may change in the future.

name Name of ψ-function used for printing.

... potential further arguments for specifying tuning parameter names and defaults.

Author(s)

Martin Maechler

See Also

The description of class psi_func.

Examples

plot(huberPsi) # => shows "all" {as an object with a smart plot() method}

## classical (Gaussian / "least-squares") psi {trivial}:
F1 <- function(x, .) rep.int(1, length(x))
FF <- function(.) rep.int(1, length(.))
cPsi <- psiFunc(rho = function(x,.) x^2 / 2, psi = function(x, .) x,

wgt = F1, Dpsi = F1,
Erho = function(.) rep.int(1/2, length(.)),
Epsi2 = FF, EDpsi = FF, name = "classic", . = Inf)

show(cPsi)
plot(cPsi)
## is the same as the limit of Huber's:
plot(chgDefaults(huberPsi, k = Inf))
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## Hampel's psi and rho:
H.38 <- chgDefaults(hampelPsi, k = c(1.5, 3.5, 8))
k. <- H.38@xtras$tuningP$k ; k.. <- as.vector(outer(c(-1,1), k.))
c.t <- adjustcolor("skyblue3", .8)
.ax.k <- function(side) { abline(h=0, v=0, lty=2)

axis(side, at = k.., labels=formatC(k..), pos=0, col=c.t, col.axis=c.t) }
op <- par(mfrow=c(2,1), mgp = c(1.5, .6, 0), mar = .6+c(2,2,1,.5))
curve(H.38@psi(x), -10, 10, col=2, lwd=2, n=512)
lines(k.., H.38@psi(k..), type = "h", lty=3, col=c.t); .ax.k(1)
curve(H.38@rho(x), -10, 10, col=2, lwd=2, n=512); abline(h=0, v=0, lty=2)
lines(k.., H.38@rho(k..), type = "h", lty=3, col=c.t); .ax.k(1)
title(expression("Hampel's " ~~~ psi(x) ~~ "and" ~~ rho(x) ~~~ " functions"))
par(op)

## Not the same, but similar, directly using the plot() method:
plot(H.38)

psi_func-class Class of "Psi Functions" for M-Estimation

Description

The class "psi_func" is used to store ψ (psi) functions for M-estimation. In particular, an object
of the class contains ρ(x) (rho), its derivative ψ(x) (psi), the weight function ψ(x)/x, and first
derivative of ψ, Dpsi = ψ′(x).

Objects from the Class

Objects can be created by calls of the form new("psi_func", ...), but preferably by psiFunc(...).

Slots

rho: the ρ() function, an object of class "functionX". This is used to formulate the objective
function; ρ() can be regarded as generalized negative log-likelihood.

psi: ψ() is the derivative of ρ, ψ(x) = d
dxρ(x); also of class "functionX".

wgt: The weight function ψ(x)/x, of class "functionX".
Dpsi: the derivative of ψ, Dpsi(x) = psi′(x); of class "functionX".
Dwgt: the derivative of the weight function, of class "functionX", is generated automatically if

psiFunc constructor is used.
tDefs: named numeric vector of tuning parameter Default values.
Erho: A function of class "functionXal" for computing E[ρ(X)] when X is standard normal

N (0, 1).
Epsi2: A function of class "functionXal" for computing E[ψ2(X)] when X is standard normal.
EDpsi: A function of class "functionXal" for computing E[ψ′(X)] when X is standard normal.
name: Name of ψ-function used for printing.
xtras: Potentially further information.
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Methods

Currently, only chgDefaults(), plot() and show().

Author(s)

Martin Maechler

See Also

psiFunc.

Examples

str(huberPsi, give.attr = FALSE)

plot(hampelPsi)# calling the plot method (nicely showing "all" !)

pulpfiber Pulp Fiber and Paper Data

Description

Measurements of aspects pulp fibers and the paper produced from them. Four properties of each
are measured in sixty-two samples.

Usage

data(pulpfiber, package="robustbase")

Format

A data frame with 62 observations on the following 8 variables.

X1 numeric vector of arithmetic fiber length

X2 numeric vector of long fiber fraction

X3 numeric vector of fine fiber fraction

X4 numeric vector of zero span tensile

Y1 numeric vector of breaking length

Y2 numeric vector of elastic modulus

Y3 numeric vector of stress at failure

Y4 numeric vector of burst strength
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Details

Cited from the reference article: The dataset contains measurements of properties of pulp fibers and
the paper made from them. The aim is to investigate relations between pulp fiber properties and the
resulting paper properties. The dataset contains n = 62 measurements of the following four pulp
fiber characteristics: arithmetic fiber length, long fiber fraction, fine fiber fraction, and zero span
tensile. The four paper properties that have been measured are breaking length, elastic modulus,
stress at failure, and burst strength.

The goal is to predict the q = 4 paper properties from the p = 4 fiber characteristics.

Author(s)

port to R and this help page: Martin Maechler

Source

Rousseeuw, P. J., Van Aelst, S., Van Driessen, K., and Agulló, J. (2004) Robust multivariate regres-
sion; Technometrics 46, 293–305.

Till 2016 available from http://users.ugent.be/~svaelst/data/pulpfiber.txt

References

Lee, J. (1992) Relationships Between Properties of Pulp-Fibre and Paper, unpublished doctoral
thesis, U. Toronto, Faculty of Forestry.

Examples

data(pulpfiber)
str(pulpfiber)

pairs(pulpfiber, gap=.1)
## 2 blocks of 4 ..
c1 <- cov(pulpfiber)
cR <- covMcd(pulpfiber)
## how different are they: The robust estimate has more clear high correlations:
symnum(cov2cor(c1))
symnum(cov2cor(cR$cov))

Qn Robust Location-Free Scale Estimate More Efficient than MAD

Description

Compute the robust scale estimator Qn, an efficient alternative to the MAD.

By default, Qn(x1, . . . , xn) is the k-th order statistic (a quantile) of the choose(n, 2) absolute
differences |xi − xj |, (for 1 ≤ i < j ≤ n), where by default (originally only possible value)
k = choose(n%/%2 + 1, 2) which is about the first quartile (25% quantile) of these pairwise
differences. See the references for more.
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Usage

Qn(x, constant = NULL, finite.corr = is.null(constant) && missing(k),
na.rm = FALSE, k = choose(n %/% 2 + 1, 2), warn.finite.corr = TRUE)

s_Qn(x, mu.too = FALSE, ...)

Arguments

x numeric vector of observations.
constant number by which the result is multiplied; the default achieves consistency for

normally distributed data. Note that until Nov. 2010, “thanks” to a typo in the
very first papers, a slightly wrong default constant, 2.2219, was used instead of
the correct one which is equal to 1 / (sqrt(2) * qnorm(5/8)) (as mentioned
already on p.1277, after (3.7) in Rousseeuw and Croux (1993)).
If you need the old slightly off version for historical reproducibility, you can use
Qn.old().
Note that the relative difference is only about 1 in 1000, and that the correction
should not affect the finite sample corrections for n ≤ 9.

finite.corr logical indicating if the finite sample bias correction factor should be applied.
Defaults to TRUE unless constant is specified. Note the for non-default k, the
consistency constant already depends on n leading to some finite sample cor-
rection, but no simulation-based small-n correction factors are available.

na.rm logical specifying if missing values (NA) should be removed from x before fur-
ther computation. If false as by default, and if there are NAs, i.e., if(anyNA(x)),
the result will be NA.

k integer, typically half of n, specifying the “quantile”, i.e., rather the order statis-
tic that Qn() should return; for the Qn() proper, this has been hard wired to
choose(n%/%2 +1, 2), i.e., ⌊n

2 ⌋ + 1. Choosing a large k is less robust but al-
lows to get non-zero results in case the default Qn() is zero.

warn.finite.corr

logical indicating if a warning should be signalled when k is non-default, in
which case specific small-n correction is not yet provided.

mu.too logical indicating if the median(x) should also be returned for s_Qn().
... potentially further arguments for s_Qn() passed to Qn().

Details

As the (default, consistency) constant needed to be corrected, the finite sample correction has been
based on a much more extensive simulation, and on a 3rd or 4th degree polynomial model in 1/n
for odd or even n, respectively.

Value

Qn() returns a number, the Qn robust scale estimator, scaled to be consistent for σ2 and i.i.d.
Gaussian observations, optionally bias corrected for finite samples.

s_Qn(x, mu.too=TRUE) returns a length-2 vector with location (µ) and scale; this is typically only
useful for covOGK(*, sigmamu = s_Qn).
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Author(s)

Original Fortran code: Christophe Croux and Peter Rousseeuw <rousse@wins.uia.ac.be>.
Port to C and R: Martin Maechler, <maechler@R-project.org>

References

Rousseeuw, P.J. and Croux, C. (1993) Alternatives to the Median Absolute Deviation, Journal of
the American Statistical Association 88, 1273–1283. doi:10.2307/2291267

Christophe Croux and Peter J. Rousseeuw (1992) A class of high-breakdown scale estimators based
on subranges , Communications in Statistics - Theory and Methods 21, 1935–1951; doi:10.1080/
03610929208830889

Christophe Croux and Peter J. Rousseeuw (1992) Time-Efficient Algorithms for Two Highly Robust
Estimators of Scale, Computational Statistics, Vol. 1, ed. Dodge and Whittaker, Physica-Verlag
Heidelberg, 411–428; available via Springer Link.

About the typo in the constant:
Christophe Croux (2010) Private e-mail, Fri Jul 16, w/ Subject Re: Slight inaccuracy of Qn imple-
mentation . . . . . . .

See Also

mad for the ‘most robust’ but much less efficient scale estimator; Sn for a similar faster but less
efficient alternative. Finally, scaleTau2 which some consider “uniformly” better than Qn or com-
petitors.

Examples

set.seed(153)
x <- sort(c(rnorm(80), rt(20, df = 1)))
s_Qn(x, mu.too = TRUE)
Qn(x, finite.corr = FALSE)

## A simple pure-R version of Qn() -- slow and memory-rich for large n: O(n^2)
Qn0R <- function(x, k = choose(n %/% 2 + 1, 2)) {

n <- length(x <- sort(x))
if(n == 0) return(NA) else if(n == 1) return(0.)
stopifnot(is.numeric(k), k == as.integer(k), 1 <= k, k <= n*(n-1)/2)
m <- outer(x,x,"-")# abs not needed as x[] is sorted
sort(m[lower.tri(m)], partial = k)[k]

}
(Qx1 <- Qn(x, constant=1)) # 0.5498463
## the C-algorithm "rounds" to 'float' single precision ..
stopifnot(all.equal(Qx1, Qn0R(x), tol = 1e-6))

(qn <- Qn(c(1:4, 10, Inf, NA), na.rm=TRUE))
stopifnot(is.finite(qn), all.equal(4.075672524, qn, tol=1e-10))

## -- compute for different 'k' :

n <- length(x) # = 100 here

https://doi.org/10.2307/2291267
https://doi.org/10.1080/03610929208830889
https://doi.org/10.1080/03610929208830889
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(k0 <- choose(floor(n/2) + 1, 2)) # 51*50/2 == 1275
stopifnot(identical(Qx1, Qn(x, constant=1, k=k0)))
nn2 <- n*(n-1)/2
all.k <- 1:nn2
system.time(Qss <- sapply(all.k, function(k) Qn(x, 1, k=k)))
system.time(Qs <- Qn (x, 1, k = all.k))
system.time(Qs0 <- Qn0R(x, k = all.k) )
stopifnot(exprs = {

Qs[1] == min(diff(x))
Qs[nn2] == diff(range(x))
all.equal(Qs, Qss, tol = 1e-15) # even exactly
all.equal(Qs0, Qs, tol = 1e-7) # see 2.68e-8, as Qn() C-code rounds to (float)

})

plot(2:nn2, Qs[-1], type="b", log="y", main = "Qn(*, k), k = 2..n(n-1)/2")

r6pack Robust Distance based observation orderings based on robust "Six
pack"

Description

Compute six initial robust estimators of multivariate location and “scatter” (scale); then, for each,
compute the distances dij and take the h (h > n/2) observations with smallest distances. Then
compute the statistical distances based on these h observations.

Return the indices of the observations sorted in increasing order.

Usage

r6pack(x, h, full.h, scaled = TRUE, scalefn = rrcov.control()$scalefn)

Arguments

x n x p data matrix

h integer, typically around (and slightly larger than) n/2.

full.h logical specifying if the full (length n) observation ordering should be returned;
otherwise only the first h are. For .detmcd(), full.h=FALSE is typical.

scaled logical indicating if the data x is already scaled; if false, we apply x <- doScale(x,
median, scalefn).

scalefn a function(u) to compute a robust univariate scale of u.

Details

The six initial estimators are

1. Hyperbolic tangent of standardized data

2. Spearmann correlation matrix
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3. Tukey normal scores

4. Spatial sign covariance matrix

5. BACON

6. Raw OGK estimate for scatter

Value

a h′ × 6 matrix of observation indices, i.e., with values from 1, . . . , n. If full.h is true, h′ = n,
otherwise h′ = h.

Author(s)

Valentin Todorov, based on the original Matlab code by Tim Verdonck and Mia Hubert. Martin
Maechler for tweaks (performance etc), and full.h.

References

Hubert, M., Rousseeuw, P. J. and Verdonck, T. (2012) A deterministic algorithm for robust location
and scatter. Journal of Computational and Graphical Statistics 21, 618–637.

See Also

covMcd(*, nsamp = "deterministic"); CovSest(*, nsamp = "sdet") from package rrcov.

Examples

data(pulpfiber)
dim(m.pulp <- data.matrix(pulpfiber)) # 62 x 8
dim(fr6 <- r6pack(m.pulp, h = 40, full.h= FALSE)) # h x 6 = 40 x 6
dim(fr6F <- r6pack(m.pulp, h = 40, full.h= TRUE )) # n x 6 = 62 x 6
stopifnot(identical(fr6, fr6F[1:40,]))

radarImage Satellite Radar Image Data from near Munich

Description

The data were supplied by A. Frery. They are a part of a synthetic aperture satellite radar image
corresponding to a suburb of Munich. Provided are coordinates and values corresponding to three
frequency bands for each of 1573 pixels.

Usage

data(radarImage, package="robustbase")

https://CRAN.R-project.org/package=rrcov
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Format

A data frame with 1573 observations on the following 5 variables.

X.coord a numeric vector

Y.coord a numeric vector

Band.1 a numeric vector

Band.2 a numeric vector

Band.3 a numeric vector

Source

The website accompanying the MMY-book: https://www.wiley.com/legacy/wileychi/robust_
statistics/

Examples

data(radarImage)
plot(Y.coord ~ X.coord, data = radarImage)

## The 8 "clear" outliers (see also below)
ii8 <- c(1548:1549, 1553:1554, 1565:1566, 1570:1571)
outF <- 1+(seq_len(nrow(radarImage)) %in% ii8)
pairs(radarImage[, 3:5], main = "radarImage (n = 1573)",

col = outF, pch=outF)

## Finding outliers -----------------------------------------

set.seed(1)
system.time(cc.ri <- covMcd(radarImage))# ~ 0.1 sec
## check for covMcd() consistency:
iiO <- as.integer(
c(262, 450:451, 480:481, 509, 535, 542, 597, 643, 669, 697, 803:804, 832:834,

862:864, 892, 989, 1123, 1145, 1223:1224, 1232:1233, 1249:1250, 1267, 1303,
1347, 1357, 1375, 1411, 1419:1420, 1443, 1453, 1504, 1510:1512,
1518:1521, 1525:1526, 1543:1544, 1546:1555, 1557:1558, 1561:1562, 1564:1566,
1569:1571, 1573))

length(iiO) # 73 -- other seeds sometimes give 72, rarely 71 "outliers"
table(isO <- cc.ri$mcd.wt == 0) # 2023-05: 118
stopifnot(exprs = {

## identical(iiO, which(isO)) -- TRUE before 2023-05 covMcd() change
ii8 %in% which(isO) # ii8 is subset of isO
identical(ii8, which(cc.ri$mah > 200))
length(intersect(cc.ri$best, iiO)) == 0

})

cc <- c(adjustcolor("black", 0.4), adjustcolor("tomato", 0.8))
pairs(radarImage, main = "radarImage (n = 1573) + Outliers", gap=0,

col = cc[1+isO], pch = c(1,8)[1+isO], cex = 0.8)

https://www.wiley.com/legacy/wileychi/robust_statistics/
https://www.wiley.com/legacy/wileychi/robust_statistics/
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rankMM Simple Matrix Rank

Description

Compute the rank of a matrix A in simple way, based on the SVD, svd(), and “the same as Matlab”.

Usage

rankMM(A, tol = NULL, sv = svd(A, 0, 0)$d)

Arguments

A a numerical matrix, maybe non-square. When sv is specified, only dim(A) is
made use of.

tol numerical tolerance (compared to singular values). By default, when NULL, the
tolerance is determined from the maximal value of sv and the computer epsilon.

sv vector of non-increasing singular values of A, (to be passed if already known).

Value

an integer from the set 0:min(dim(A)).

Author(s)

Martin Maechler, Date: 7 Apr 2007

See Also

There are more sophisticated proposals for computing the rank of a matrix; for a couple of those,
see rankMatrix in the Matrix package.

Examples

rankMM # - note the simple function definition

hilbert <- function(n) { i <- seq_len(n); 1/outer(i - 1L, i, "+") }
hilbert(4)
H12 <- hilbert(12)
rankMM(H12) # 11 - numerically more realistic
rankMM(H12, tol=0) # -> 12
## explanation :
round(log10(svd(H12, 0,0)$d), 1)

https://CRAN.R-project.org/package=Matrix
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residuals.glmrob Residuals of Robust Generalized Linear Model Fits

Description

Compute residuals of a fitted glmrob model, i.e., robust generalized linear model fit.

Usage

## S3 method for class 'glmrob'
residuals(object,

type = c("deviance", "pearson", "working",
"response", "partial"),

...)

Arguments

object an object of class glmrob, typically the result of a call to glmrob.

type the type of residuals which should be returned. The alternatives are: "deviance"
(default), "pearson", "working", "response", and "partial".

... further arguments passed to or from other methods.

Details

The references in glm define the types of residuals: Davison & Snell is a good reference for the
usages of each.

The partial residuals are a matrix of working residuals, with each column formed by omitting a term
from the model.

The residuals (S3) method (see methods) for glmrob models has been modeled to follow closely
the method for classical (non-robust) glm fitted models. Possibly, see its documentation, i.e., resid-
uals.glm, for further details.

References

See those for the classical GLM’s, glm.

See Also

glmrob for computing object, anova.glmrob; the corresponding generic functions, summary.glmrob,
coef, fitted, residuals.
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Examples

### -------- Gamma family -- data from example(glm) ---
clotting <- data.frame(

u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

summary(cl <- glm (lot1 ~ log(u), data=clotting, family=Gamma))
summary(ro <- glmrob(lot1 ~ log(u), data=clotting, family=Gamma))
clotM5.high <- within(clotting, { lot1[5] <- 60 })
cl5.high <- glm (lot1 ~ log(u), data=clotM5.high, family=Gamma)
ro5.high <- glmrob(lot1 ~ log(u), data=clotM5.high, family=Gamma)
rr <- range(residuals(ro), residuals(cl), residuals(ro5.high))
plot(residuals(ro5.high) ~ residuals(cl5.high), xlim = rr, ylim = rr, asp = 1)
abline(0,1, col=2, lty=3)
points(residuals(ro) ~ residuals(cl), col = "gray", pch=3)

## Show all kinds of residuals:
r.types <- c("deviance", "pearson", "working", "response")
sapply(r.types, residuals, object = ro5.high)

rrcov.control Control Settings for covMcd and ltsReg

Description

Auxiliary function for passing the estimation options as parameters to the estimation functions.

Usage

rrcov.control(alpha = 1/2, method = c("covMcd", "covComed", "ltsReg"),
nsamp = 500, nmini = 300, kmini = 5,
seed = NULL, tolSolve = 1e-14,
scalefn = "hrv2012", maxcsteps = 200,
trace = FALSE,
wgtFUN = "01.original", beta,
use.correction = identical(wgtFUN, "01.original"),
adjust = FALSE)

Arguments

alpha This parameter controls the size of the subsets over which the determinant is
minimized, i.e., alpha*n observations are used for computing the determinant.
Allowed values are between 0.5 and 1 and the default is 0.5.

method a string specifying the “main” function for which rrcov.control() is used.
This currently only makes a difference to determine the default for beta.
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nsamp number of subsets used for initial estimates or "best" or "exact". Default
is nsamp = 500. If nsamp="best" exhaustive enumeration is done, as far as the
number of trials do not exceed 5000. If nsamp="exact" exhaustive enumeration
will be attempted however many samples are needed. In this case a warning
message will be displayed saying that the computation can take a very long
time.

nmini, kmini for covMcd: For large n, the algorithm splits the data into maximally kmini
subsets of targetted size nmini. See covMcd for more details.

seed initial seed for R’s random number generator; see .Random.seed and the de-
scription of the seed argument in lmrob.control.

tolSolve numeric tolerance to be used for inversion (solve) of the covariance matrix in
mahalanobis.

scalefn (for deterministic covMcd():) a character string or function for computing a
robust scale estimate. The current default "hrv2012" uses the recommendation
of Hubert et al (2012); see covMcd for more.

maxcsteps integer specifying the maximal number of concentration steps for the determin-
istic MCD.

trace logical or integer indicating whether to print intermediate results. Default is
trace = FALSE.

wgtFUN a character string or function, specifying how the weights for the reweighting
step should be computed, see ltsReg, covMcd or covComed, respectively. The
default is specified by "01.original", as the resulting weights are 0 or 1. Alter-
native string specifications need to match names(.wgtFUN.covComed) - which
currently is experimental.

beta a quantile, experimentally used for some of the prespecified wgtFUNs, see e.g.,
.wgtFUN.covMcd and .wgtFUN.covComed.

use.correction whether to use finite sample correction factors. Defaults to TRUE.

adjust (for ltsReg():) whether to perform intercept adjustment at each step. Because
this can be quite time consuming, the default is adjust = FALSE.

Value

A list with components, as the parameters passed by the invocation

Author(s)

Valentin Todorov

See Also

For details, see the documentation about ltsReg and covMcd, respectively.

Examples

data(Animals, package = "MASS")
brain <- Animals[c(1:24, 26:25, 27:28),]
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data(hbk)
hbk.x <- data.matrix(hbk[, 1:3])

ctrl <- rrcov.control(alpha=0.75, trace=TRUE)
covMcd(hbk.x, control = ctrl)
covMcd(log(brain), control = ctrl)

salinity Salinity Data

Description

This is a data set consisting of measurements of water salinity (i.e., its salt concentration) and river
discharge taken in North Carolina’s Pamlico Sound, recording some bi-weekly averages in March,
April, and May from 1972 to 1977. This dataset was listed by Ruppert and Carroll (1980). In
Carrol and Ruppert (1985) the physical background of the data is described. They indicated that
observations 5 and 16 correspond to periods of very heavy discharge and showed that the discrepant
observation 5 was masked by observations 3 and 16, i.e., only after deletion of these observations it
was possible to identify the influential observation 5.

This data set is a prime example of the masking effect.

Usage

data(salinity, package="robustbase")

Format

A data frame with 28 observations on the following 4 variables (in parentheses are the names used
in the 1980 reference).

X1: Lagged Salinity (‘SALLAG’)
X2: Trend (‘TREND’)
X3: Discharge (‘H2OFLOW’)
Y: Salinity (‘SALINITY’)

Note

The boot package contains another version of this salinity data set, also attributed to Ruppert and
Carroll (1980), but with two clear transcription errors, see the examples.

Source

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, p.82,
table 5.

Ruppert, D. and Carroll, R.J. (1980) Trimmed least squares estimation in the linear model. JASA
75, 828–838; table 3, p.835.

Carroll, R.J. and Ruppert, D. (1985) Transformations in regression: A robust analysis. Technomet-
rics 27, 1–12

https://CRAN.R-project.org/package=boot
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Examples

data(salinity)
summary(lm.sali <- lm(Y ~ . , data = salinity))
summary(rlm.sali <- MASS::rlm(Y ~ . , data = salinity))
summary(lts.sali <- ltsReg(Y ~ . , data = salinity))

salinity.x <- data.matrix(salinity[, 1:3])
c_sal <- covMcd(salinity.x)
plot(c_sal, "tolEllipsePlot")

## Connection with boot package's version :
if(requireNamespace("boot")) { ## 'always'
print( head(boot.sal <- boot::salinity ) )
print( head(robb.sal <- salinity [, c(4, 1:3)]) ) # difference: has one digit more
## Otherwise the same ?
dimnames(robb.sal) <- dimnames(boot.sal)
## apart from the 4th column, they are "identical":
stopifnot( all.equal(boot.sal[, -4], robb.sal[, -4], tol = 1e-15) )

## But the discharge ('X3', 'dis' or 'H2OFLOW') __differs__ in two places:
plot(cbind(robustbase = robb.sal[,4], boot = boot.sal[,4]))
abline(0,1, lwd=3, col=adjustcolor("red", 1/4))
D.sal <- robb.sal[,4] - boot.sal[,4]
stem(robb.sal[,4] - boot.sal[,4])
which(abs(D.sal) > 0.01) ## 2 8
## *two* typos (=> difference ~= 1) in the version of 'boot': obs. 2 & 8 !!!
cbind(robb = robb.sal[,4], boot = boot.sal[,4], D.sal)

}# boot

scaleTau2 Robust Tau-Estimate of Scale

Description

Computes the robust τ -estimate of univariate scale, as proposed by Maronna and Zamar (2002);
improved by a consistency factor,

Usage

scaleTau2(x, c1 = 4.5, c2 = 3.0, na.rm = FALSE, consistency = TRUE,
mu0 = median(x),
sigma0 = median(x.), mu.too = FALSE, iter = 1, tol.iter = 1e-7)

Arguments

x numeric vector

c1, c2 non-negative numbers, specifying cutoff values for the biweighting of the mean
and the rho function respectively.
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na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

consistency logical indicating if the consistency correction factor (for the scale) should be
applied.

mu0 the initial location estimate µ0, defaulting to the median.

sigma0 the initial scale estimate s0, defaulting to the MAD; may be set to a positive
value when the MAD is zero.

mu.too logical indicating if both location and scale should be returned or just the scale
(when mu.too=FALSE as by default).

iter positive integer or logical indicating if and how many iterations should be done.
The default, iter = 1 computes the “traditional” tau-estimate of scale.

tol.iter if iter is true, or iter > 1, stop the iterations when |sn − so| ≤ ϵsn, where
ϵ :=tol.iter, and so and sn are the previous and current estimates of σ.

Details

First, s0 := MAD, i.e. the equivalent of mad(x, constant=1) is computed. Robustness weights
wi := wc1((xi −med(X))/s0) are computed, where wc(u) = max(0, (1− (u/c)2)2). The robust
location measure is defined as µ(X) := (

∑
i wixi)/(

∑
i wi), and the robust τ(tau)-estimate is

s(X)2 := s20 ∗ (1/n)
∑

i ρc2((xi − µ(X))/s0), where ρc(u) = min(c2, u2).
When iter=TRUE or iter > 1, the above estimate is iterated in a fixpoint iteration, setting s0 to the
current estimate s(X) and iterating until the number of iterations is larger than iter or the fixpoint
is found in the sense that \
scaleTau2(*, consistency=FALSE) returns s(X), whereas this value is divided by its asymptotic
limit when consistency = TRUE as by default.

Note that for n = length(x) == 2, all equivariant scale estimates are proportional, and specifically,
scaleTau2(x, consistency=FALSE) == mad(x, constant=1). See also the reference.

Value

numeric vector of length one (if mu.too is FALSE as by default) or two (when mu.too = TRUE) with
robust scale or (location,scale) estimators σ̂(x) or (µ̂(x), σ̂(x)).

Author(s)

Original by Kjell Konis with substantial modifications by Martin Maechler.

References

Maronna, R.A. and Zamar, R.H. (2002) Robust estimates of location and dispersion of high-dimensional
datasets; Technometrics 44(4), 307–317.

Yohai, V.J., and Zamar, R.H. (1988). High breakdown-point estimates of regression by means of
the minimization of an efficient scale. Journal of the American Statistical Association 83, 406–413.

See Also

Sn, Qn, mad; further covOGK for which scaleTau2 was designed.
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Examples

x <- c(1:7, 1000)
sd(x) # non-robust std.deviation
scaleTau2(x)
scaleTau2(x, mu.too = TRUE)
(sI <- scaleTau2(c(x,Inf), mu.too = TRUE))
(sIN <- scaleTau2(c(x,Inf,NA), mu.too = TRUE, na.rm=TRUE))
stopifnot({

identical(sI, sIN)
all.equal(scaleTau2(c(x, 999), mu.too = TRUE), sIN,

tol = 1e-15)
})

if(doExtras <- robustbase:::doExtras()) {
set.seed(11)
## show how much faster this is, compared to Qn
x <- sample(c(rnorm(1e6), rt(5e5, df=3)))
(system.time(Qx <- Qn(x))) ## 2.04 [2017-09, lynne]
(system.time(S2x <- scaleTau2(x))) ## 0.25 (ditto)
cbind(Qn = Qx, sTau2 = S2x)

}## Qn sTau2
## 1.072556 1.071258

SiegelsEx Siegel’s Exact Fit Example Data

Description

A small counterexample data set devised by Andrew Siegel. Six (out of nine) data points lie on the
line y = 0 such that some robust regression estimators exhibit the “exact fit” property.

Usage

data(SiegelsEx, package="robustbase")

Format

A data frame with 9 observations on the following 2 variables.

x a numeric vector
y a numeric vector

Source

Emerson and Hoaglin (1983, p.139)

References

Peter J. Rousseeuw and Annick M. Leroy (1987) Robust Regression and Outlier Detection Wiley,
p.60–61
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Examples

data(SiegelsEx)
plot(SiegelsEx, main = "Siegel's example for 'exact fit'")
abline( lm(y ~ x, data = SiegelsEx))
abline(MASS::lqs(y ~ x, data = SiegelsEx, method = "lms"), col = 2)
legend("topright", leg = c("lm", "LMS"), col=1:2, lwd=1, inset = 1/20)

sigma Extract ’Sigma’ - Standard Deviation of Errors for Robust Models

Description

Extract the estimated standard deviation of the errors, the “residual standard deviation” (misnomed
also “residual standard error”) from a fitted model.

Usage

## S3 method for class 'lmrob'
sigma(object, ...)

Arguments

object a fitted model.

... additional, optional arguments. (None are used in our methods)

Details

For R <= 3.2.x, we provide an (S3) generic function (as e.g., package lme4) and methods for
lmrob, nlrob, and nls.

From R >= 3.3.0, we provide methods for our lmrob and nlrob models.

Value

the residual standard error as a scalar

Examples

m.cl <- lm (Y ~ ., data=coleman)
if(getRversion() >= "3.3.0") sigma(m.cl) else summary(m.cl)$sigma
sigma( m1 <- lmrob(Y ~ ., data=coleman) )
sigma( m2 <- lmrob(Y ~ ., data=coleman, setting = "KS2014") )

https://CRAN.R-project.org/package=lme4
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smoothWgt Smooth Weighting Function - Generalized Biweight

Description

“The Biweight on a Stick” — Compute a smooth (when h > 0) weight function typically for
computing weights from large (robust) “distances” using a piecewise polynomial function which in
fact is a 2-parameter generalization of Tukey’s 1-parameter “biweight”.

Usage

smoothWgt(x, c, h)

Arguments

x numeric vector of abscissa values

c “cutoff”, a typically positive number.

h “bandwidth”, a positive number.

Details

Let w(x; c, h) :=smoothWgt(x, c, h). Then,

w(x; c, h) := 0 if |x| ≥ c+ h/2,

w(x; c, h) := 1 if |x| ≤ c− h/2,

w(x; c, h) :=
(
(1− |x| − (c− h/2))2

)2
if c− h/2 < |x| < c+ h/2,

smoothWgt() is scale invariant in the sense that

w(σx;σc, σh) = w(x; c, h),

when σ > 0.

Value

a numeric vector of the same length as x with weights between zero and one. Currently all
attributes including dim and names are dropped.

Author(s)

Martin Maechler

See Also

Mwgt(.., psi = "bisquare") of which smoothWgt() is a generalization, and Mwgt(.., psi =
"optimal") which looks similar for larger c with its constant one part around zero, but also has
only one parameter.
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Examples

## a somewhat typical picture:
curve(smoothWgt(x, c=3, h=1), -5,7, n = 1000)

csW <- curve(smoothWgt(x, c=1/2, h=1), -2,2) # cutoff 1/2, bandwidth 1
## Show that the above is the same as
## Tukey's "biweight" or "bi-square" weight function:
bw <- function(x) pmax(0, (1 - x^2))^2
cbw <- curve(bw, col=adjustcolor(2, 1/2), lwd=2, add=TRUE)
cMw <- curve(Mwgt(x,c=1,"biweight"), col=adjustcolor(3, 1/2), lwd=2, add=TRUE)
stopifnot(## proving they are all the same:

all.equal(csW, cbw, tol=1e-15),
all.equal(csW, cMw, tol=1e-15))

Sn Robust Location-Free Scale Estimate More Efficient than MAD

Description

Compute the robust scale estimator Sn, an efficient alternative to the MAD.

Usage

Sn(x, constant = 1.1926, finite.corr = missing(constant), na.rm = FALSE)

s_Sn(x, mu.too = FALSE, ...)

Arguments

x numeric vector of observations.

constant number by which the result is multiplied; the default achieves consisteny for
normally distributed data.

finite.corr logical indicating if the finite sample bias correction factor should be applied.
Default to TRUE unless constant is specified.

na.rm logical specifying if missing values (NA) should be removed from x before fur-
ther computation. If false as by default, and if there are NAs, i.e., if(anyNA(x)),
the result will be NA.

mu.too logical indicating if the median(x) should also be returned for s_Sn().

... potentially further arguments for s_Sn() passed to Sn().

Details

............ FIXME ........
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Value

Sn() returns a number, the Sn robust scale estimator, scaled to be consistent for σ2 and i.i.d. Gaus-
sian observations, optionally bias corrected for finite samples.

s_Sn(x, mu.too=TRUE) returns a length-2 vector with location (µ) and scale; this is typically only
useful for covOGK(*, sigmamu = s_Sn).

Author(s)

Original Fortran code: Christophe Croux and Peter Rousseeuw <rousse@wins.uia.ac.be>.
Port to C and R: Martin Maechler, <maechler@R-project.org>

References

Rousseeuw, P.J. and Croux, C. (1993) Alternatives to the Median Absolute Deviation, Journal of
the American Statistical Association 88, 1273–1283.

See Also

mad for the ‘most robust’ but much less efficient scale estimator; Qn for a similar more efficient but
slower alternative; scaleTau2.

Examples

x <- c(1:10, 100+1:9)# 9 outliers out of 19
Sn(x)
Sn(x, c=1)# 9
Sn(x[1:18], c=1)# 9
set.seed(153)
x <- sort(c(rnorm(80), rt(20, df = 1)))
s_Sn(x, mu.too=TRUE)

(s <- Sn(c(1:4, 10, Inf, NA), na.rm=TRUE))
stopifnot(is.finite(s), all.equal(3.5527554, s, tol=1e-10))

splitFrame Split Continuous and Categorical Predictors

Description

Splits the design matrix into categorical and continuous predictors. Categorical variables are vari-
ables that are factors, ordered factors, or character.

Usage

splitFrame(mf, x = model.matrix(mt, mf),
type = c("f","fi", "fii"))
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Arguments

mf model frame (as returned by model.frame).

x (optional) design matrix, defaulting to the derived model.matrix.

type a character string specifying the split type (see details).

Details

Which split type is used can be controlled with the setting split.type in lmrob.control.

There are three split types. The only differences between the types are how interactions between
categorical and continuous variables are handled. The extra types of splitting can be used to avoid
Too many singular resamples errors.

Type "f", the default, assigns only the intercept, categorical and interactions of categorical variables
to x1. Interactions of categorical and continuous variables are assigned to x2.

Type "fi" assigns also interactions between categorical and continuous variables to x1.

Type "fii" assigns not only interactions between categorical and continuous variables to x1, but
also the (corresponding) continuous variables themselves.

Value

A list that includes the following components:

x1 design matrix containing only categorical variables

x1.idx logical vectors of the variables considered categorical in the original design ma-
trix

x2 design matrix containing the continuous variables

Author(s)

Manuel Koller

References

Maronna, R. A., and Yohai, V. J. (2000). Robust regression with both continuous and categorical
predictors. Journal of Statistical Planning and Inference 89, 197–214.

See Also

lmrob.M.S

Examples

data(education)
education <- within(education, Region <- factor(Region))
educaCh <- within(education, Region <- as.character(Region))

## no interactions -- same split for all types:
fm1 <- lm(Y ~ Region + X1 + X2 + X3, education)
fmC <- lm(Y ~ Region + X1 + X2 + X3, educaCh )
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splt <- splitFrame(fm1$model) ; str(splt)
splC <- splitFrame(fmC$model)
stopifnot(identical(splt, splC))

## with interactions:
fm2 <- lm(Y ~ Region:X1:X2 + X1*X2, education)
s1 <- splitFrame(fm2$model, type="f" )
s2 <- splitFrame(fm2$model, type="fi" )
s3 <- splitFrame(fm2$model, type="fii")
cbind(s1$x1.idx,

s2$x1.idx,
s3$x1.idx)

rbind(p.x1 = c(ncol(s1$x1), ncol(s2$x1), ncol(s3$x1)),
p.x2 = c(ncol(s1$x2), ncol(s2$x2), ncol(s3$x2)))

starsCYG Hertzsprung-Russell Diagram Data of Star Cluster CYG OB1

Description

Data for the Hertzsprung-Russell Diagram of the Star Cluster CYG OB1, which contains 47 stars
in the direction of Cygnus, from C.Doom. The first variable is the logarithm of the effective tem-
perature at the surface of the star (Te) and the second one is the logarithm of its light intencity
(L/L0).

In the Hertzsprung-Russell diagram, which is the scatterplot of these data points, where the log
temperature is plotted from left to right, two groups of points are seen:
the majority which tend to follow a steep band and four stars in the upper corner. In the astronomy
the 43 stars are said to lie on the main sequence and the four remaining stars are called “giants” (the
points 11, 20, 30, 34).

Usage

data(starsCYG, package="robustbase")

Format

A data frame with 47 observations on the following 2 variables

log.Te Logarithm of the effective temperature at the surface of the star (Te).

log.light Logarithm of its light intencity (L/L0)

Source

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, p.27,
table 3.
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Examples

data(starsCYG)
plot(starsCYG)
cst <- covMcd(starsCYG)
lm.stars <- lm(log.light ~ log.Te, data = starsCYG)
summary(lm.stars)
plot(lm.stars)
lts.stars <- ltsReg(log.light ~ log.Te, data = starsCYG)
plot(lts.stars)

steamUse Steam Usage Data (Excerpt)

Description

The monthly use of steam (Steam) in a factory may be modeled and described as function of the op-
erating days per month (Operating.Days) and mean outside temperature per month (Temperature).

Usage

data("steamUse", package="robustbase")

Format

A data frame with 25 observations on the following 9 variables.

Steam: regression response Y , the poinds of steam used monthly.

fattyAcid: pounds of Real Fatty Acid in storage per month.

glycerine: pounds of crude glycerine made.

wind: average wind velocity in miles per hour (a numeric vector).

days: an integer vector with number of days of that month, i.e., in 28..31.

op.days: the number of operating days for the given month (integer).

freeze.d: the number of days below 32 degrees Fahrenheit (= 0°C (C=Celsius) = freezing tem-
perature of water).

temperature: a numeric vector of average outside temperature in Fahrenheit (F).

startups: the number of startups (of production in that month).

Details

Nor further information is given in Draper and Smith, about the place and exacts years of the
measurements, though some educated guesses should be possible, see the examples.
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Source

Data from Draper and Smith, 1st ed, 1966; appendix A.

A version of this has been used in teaching at SfS ETH Zurich, since at least 1996, https://stat.
ethz.ch/Teaching/Datasets/NDK/dsteam.dat

The package aprean3 contains all data sets from the 3rd edition of Draper and Smith (1998), and
this data set with variable names x1 .. x10 (x9 being wind^2, hence extraneous).

References

Draper and Smith (1981) Applied Regression Analysis (2nd ed., p. 615 ff)

Examples

## Not run:
if(require("aprean3")) { # show how 'steamUse' is related to 'dsa01a'

stm <- dsa01a
names(stm) <- c("Steam", "fattyAcid", "glycerine", "wind",
"days", "op.days", "freeze.d",
"temperature", "wind.2", "startups")
## prove that wind.2 is wind^2, "traditionally" rounded to 1 digit:
stopifnot(all.equal(floor(0.5 + 10*stm[,"wind"]^2)/10,

stm[,"wind.2"], tol = 1e-14))
## hence drop it
steamUse <- stm[, names(stm) != "wind.2"]

}

## End(Not run)
data(steamUse)
str(steamUse)
## Looking at this,
cbind(M=rep_len(month.abb, 25), steamUse[,5:8, drop=FALSE])
## one will conjecture that these were 25 months, Jan--Jan in a row,
## starting in a leap year (perhaps 1960 ?).

plot(steamUse)

summary(fm1 <- lmrob(Steam ~ temperature + op.days, data=steamUse))
## diagnoses 2 outliers: month of July, maybe company-wide summer vacations
## KS2014 alone seems not robust enough:
summary(fm.14 <- lmrob(Steam ~ temperature + op.days, data=steamUse,

setting="KS2014"))
pairs(Steam ~ temperature+op.days, steamUse)

summarizeRobWeights Print a Nice "summary" of Robustness Weights

Description

Print a nice “summary” about a numeric vector of robustness weights. Observations with weights
around zero are marked as outliers.

https://stat.ethz.ch/Teaching/Datasets/NDK/dsteam.dat
https://stat.ethz.ch/Teaching/Datasets/NDK/dsteam.dat
https://CRAN.R-project.org/package=aprean3
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Usage

summarizeRobWeights(w, digits = getOption("digits"),
header = "Robustness weights:",

eps = 0.1 / length(w), eps1 = 1e-3, ...)

Arguments

w numeric vector of robustness weigths.

digits digits to be used for printing.

header string to be printed as header line.

eps numeric tolerance ϵ: values of w with |wi| < ϵ/n are said to be outliers.

eps1 numeric tolerance: values of w with |1− wi| < eps1 are said to have weight ‘~=
1’.

... potential further arguments, passed to print().

Value

none; the function is used for its side effect of printing.

Author(s)

Martin Maechler

See Also

The summary methods for lmrob and glmrob make use of summarizeRobWeights().

Our methods for weights(), weights.lmrob(*, type="robustness") and weights.glmrob(*,
type="robustness").

Examples

w <- c(1,1,1,1,0,1,1,1,1,0,1,1,.9999,.99999, .5,.6,1e-12)
summarizeRobWeights(w) # two outside ~= {0,1}
summarizeRobWeights(w, eps1 = 5e-5)# now three outside {0,1}

## See the summary(<lmrob>) outputs

summary.glmrob Summarizing Robust Fits of Generalized Linear Models

Description

The summary method for class "glmrob" summarizes robust fits of (currently only discrete) gener-
alized linear models.
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Usage

## S3 method for class 'glmrob'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)
## S3 method for class 'glmrob'
vcov(object, ...)

## S3 method for class 'summary.glmrob'
print(x, digits = max(3, getOption("digits") - 3),

symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "glmrob", usually, a result of a call to glmrob.

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum) rather
than as numbers.

... further arguments passed to or from other methods.

x an object of class "summary.glrob".

digits the number of digits to use for printing.

signif.stars logical indicating if the P-values should be visualized by so called “significance
stars”.

Details

summary.glmrob returns an object of class "summary.glmrob".

Its print() method tries to be smart about formatting the coefficients, standard errors, etc, and gives
“significance stars” if signif.stars is TRUE (as per default when options where not changed).

Value

The function summary.glmrob computes and returns a list of summary statistics of the robustly
fitted linear model given in object. The following elements are in the list:

... FIXME

Author(s)

Andreas Ruckstuhl

See Also

glmrob; the generic summary and also summary.glm.
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Examples

data(epilepsy)
Rmod <- glmrob(Ysum ~ Age10 + Base4*Trt, family = poisson,

data = epilepsy, method= "Mqle")
ss <- summary(Rmod)
ss ## calls print.summary.glmrob()
str(ss) ## internal STRucture of summary object

summary.lmrob Summary Method for "lmrob" Objects

Description

Summary method for R object of class "lmrob" and print method for the summary object.

Further, methods fitted(), residuals() work (via the default methods), and predict() (see
predict.lmrob, vcov(), weights() (see weights.lmrob), model.matrix(), confint(), dummy.coef(),
hatvalues(), etc., have explicitly defined lmrob methods. .lmrob.hat() is the lower level “work
horse” of the hatvalues() method.

Usage

## S3 method for class 'lmrob'
summary(object, correlation = FALSE,

symbolic.cor = FALSE, ...)
## S3 method for class 'summary.lmrob'
print(x, digits = max(3, getOption("digits") - 3),

symbolic.cor= x$symbolic.cor,
signif.stars = getOption("show.signif.stars"),
showAlgo = TRUE, ...)

## S3 method for class 'lmrob'
vcov(object, cov = object$control$cov, complete = TRUE, ...)
## S3 method for class 'lmrob'
model.matrix(object, ...)

Arguments

object an R object of class lmrob, typically created by lmrob.

correlation logical variable indicating whether to compute the correlation matrix of the es-
timated coefficients.

symbolic.cor logical indicating whether to use symbols to display the above correlation ma-
trix.

x an R object of class summary.lmrob, typically resulting from summary(lmrob(..),..).

digits number of digits for printing, see digits in options.
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signif.stars logical variable indicating whether to use stars to display different levels of sig-
nificance in the individual t-tests.

showAlgo optional logical indicating if the algorithmic parameters (as mostly inside the
control part) should be shown.

cov covariance estimation function to use, a function or character string naming the
function; robustbase currently provides ".vcov.w" and ".vcov.avar1", see
Details of lmrob. Particularly useful when object is the result of lmrob(..,
cov = "none"), where

object$cov <- vcov(object, cov = ".vcov.w")

allows to update the fitted object.

complete (mainly for R >= 3.5.0:) logical indicating if the full variance-covariance
matrix should be returned also in case of an over-determined system where some
coefficients are undefined and coef(.) contains NAs correspondingly. When
complete = TRUE, vcov() is compatible with coef() also in this singular case.

... potentially more arguments passed to methods.

Value

summary(object) returns an object of S3 class "summary.lmrob", basically a list with compo-
nents "call", "terms", "residuals", "scale", "rweights", "converged", "iter", "control" all copied from
object, and further components, partly for compatibility with summary.lm,

coefficients a matrix with columns "Estimate", "Std. Error", "t value", and "PR(>|t|)",
where "Estimate" is identical to coef(object). Note that coef(<summary.obj>)
is slightly preferred to access this matrix.

df degrees of freedom, in an lm compatible way.

sigma identical to sigma(object).

aliased ..

cov derived from object$cov.

r.squared robust “R squared” or R2, a coefficient of determination: This is the consis-
tency corrected robust coefficient of determination by Renaud and Victoria-
Feser (2010).

adj.r.squared an adjusted R squared, see r.squared.

References

Renaud, O. and Victoria-Feser, M.-P. (2010). A robust coefficient of determination for regression,
Journal of Statistical Planning and Inference 140, 1852-1862.

See Also

lmrob, predict.lmrob, weights.lmrob, summary.lm, print, summary.
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Examples

mod1 <- lmrob(stack.loss ~ ., data = stackloss)
sa <- summary(mod1) # calls summary.lmrob(....)
sa # dispatches to call print.summary.lmrob(....)

## correlation between estimated coefficients:
cov2cor(vcov(mod1))

cbind(fit = fitted(mod1), resid = residuals(mod1),
wgts= weights(mod1, type="robustness"),
predict(mod1, interval="prediction"))

data(heart)
sm2 <- summary( m2 <- lmrob(clength ~ ., data = heart) )
sm2

summary.lts Summary Method for LTS objects

Description

summary method for class "lts".

Usage

## S3 method for class 'lts'
summary(object, correlation = FALSE, ...)

## S3 method for class 'summary.lts'
print(x, digits = max(3, getOption("digits") - 3),

signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "lts", usually, a result of a call to ltsReg.

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

x an object of class "summary.lts", usually, a result of a call to summary.lts.

digits the number of significant digits to use when printing.

signif.stars logical indicating if “significance stars” should be printer, see printCoefmat.

... further arguments passed to or from other methods.
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Details

These functions compute and print summary statistics for weighted least square estimates with
weights based on LTS estimates. Therefore the statistics are similar to those for LS but all terms are
multiplied by the corresponding weight.

Correlations are printed to two decimal places: to see the actual correlations print summary(object)$correlation
directly.

Value

The function summary.lts computes and returns a list of summary statistics of the fitted linear
model given in object, using the components of this object (list elements).

residuals the residuals - a vector like the response y containing the residuals from the
weighted least squares regression.

coefficients a p × 4 matrix with columns for the estimated coefficient, its standard error,
t-statistic and corresponding (two-sided) p-value.

sigma the estimated scale of the reweighted residuals

σ̂2 =
1

n− p

∑
i

R2
i ,

where Ri is the i-th residual, residuals[i].

df degrees of freedom, a 3-vector (p, n− p, p∗), the last being the number of non-
aliased coefficients.

fstatistic (for models including non-intercept terms) a 3-vector with the value of the F-
statistic with its numerator and denominator degrees of freedom.

r.squared R2, the “fraction of variance explained by the model”,

R2 = 1−
∑

iR
2
i∑

i(yi − y∗)2
,

where y∗ is the mean of yi if there is an intercept and zero otherwise.

adj.r.squared the above R2 statistic “adjusted”, penalizing for higher p.

cov.unscaled a p× p matrix of (unscaled) covariances of the β̂j , j = 1, . . . , p.

correlation the correlation matrix corresponding to the above cov.unscaled, if correlation
= TRUE is specified.

See Also

ltsReg; the generic summary.

Examples

data(Animals2)
ltsA <- ltsReg(log(brain) ~ log(body), data = Animals2)
(slts <- summary(ltsA))
## non-default options for printing the summary:
print(slts, digits = 5, signif.stars = FALSE)
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summary.mcd Summary Method for MCD objects

Description

summary method for class "mcd".

Usage

## S3 method for class 'mcd'
summary(object, ...)
## S3 method for class 'summary.mcd'
print(x, digits = max(3, getOption("digits") - 3),

print.gap = 2, ...)

Arguments

object, x an object of class "mcd" (or "summary.mcd"); usually, a result of a call to
covMcd.

digits the number of significant digits to use when printing.
print.gap number of horizontal spaces between numbers; see also print.default.
... further arguments passed to or from other methods.

Details

summary.mcd(), the S3 method, simply returns an (S3) object of class "summary.mcd" for which
there’s a print method:

print.summary.mcd prints summary statistics for the weighted covariance matrix and location
estimates with weights based on MCD estimates. While the function print.mcd prints only the
robust estimates of the location and the covariance matrix, print.summary.mcd will print also
the correlation matrix (if requested in the call to covMcd with cor=TRUE), the eigenvalues of the
covariance or the correlation matrix and the robust (“Mahalanobis”) distances.

Value

summary.mcd returns an summary.mcd object, whereas the print methods returns its first argument
via invisible, as all print methods do.

See Also

covMcd, summary

Examples

data(Animals, package = "MASS")
brain <- Animals[c(1:24, 26:25, 27:28),]
lbrain <- log(brain)
summary(cLB <- covMcd(lbrain))
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summary.nlrob Summarizing Robust Fits of Nonlinear Regression Models

Description

summary method for objects of class "nlrob", i.e., nlrob() results. Currently it only works for
nlrob(*, method="M").

Usage

## S3 method for class 'nlrob'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

Arguments

object an object of class "nlrob", usually, a result of a call to nlrob.

correlation logical variable indicating whether to compute the correlation matrix of the es-
timated coefficients.

symbolic.cor logical indicating whether to use symbols to display the above correlation ma-
trix.

... further arguments passed to or from other methods.

Value

The function summary.nlrob computes and returns an object of class "summary.nlrob" of sum-
mary statistics of the robustly fitted linear model given in object. There is a print method, print.summary.lmrob(),
which nicely formats the output.

The result keeps a large part of object’s components such as residuals, cov or w, and additionally
contains

coefficients the matrix of coefficients, standard errors and p-values.

correlation if the correlation argument was true, the correlation matrix of the parameters.

Author(s)

Andreas Ruckstuhl

See Also

nlrob(), also for examples.
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telef Number of International Calls from Belgium

Description

Number of international calls from Belgium, taken from the Belgian Statistical Survey, published
by the Ministry of Economy.

Usage

data(telef, package="robustbase")

Format

A data frame with 24 observations on the following 2 variables.

Calls Number of Calls (in tens of millions)

Year Year (1950 - 1973)

Source

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection; Wiley, page 26,
table 2.

Examples

data(telef)
summary(lm.telef <- lm(Year~., data=telef))

tolEllipsePlot Tolerance Ellipse Plot

Description

Plots the 0.975 tolerance ellipse of the bivariate data set x. The ellipse is defined by those data
points whose distance is equal to the squareroot of the 0.975 chisquare quantile with 2 degrees of
freedom.

Usage

tolEllipsePlot(x, m.cov = covMcd(x), cutoff = NULL, id.n = NULL,
classic = FALSE, tol = 1e-07,
xlab = "", ylab = "",
main = "Tolerance ellipse (97.5%)",
txt.leg = c("robust", "classical"),
col.leg = c("red", "blue"),
lty.leg = c("solid","dashed"))
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Arguments

x a two dimensional matrix or data frame.

m.cov an object similar to those of class "mcd"; however only its components center
and cov will be used. If missing, the MCD will be computed (via covMcd()).

cutoff numeric distance needed to flag data points outside the ellipse.

id.n number of observations to be identified by a label. If not supplied, the number
of observations with distance larger than cutoff is used.

classic whether to plot the classical distances as well, FALSE by default.

tol tolerance to be used for computing the inverse, see solve. Defaults to 1e-7.

xlab, ylab, main passed to plot.default.
txt.leg, col.leg, lty.leg

character vectors of length 2 for the legend, only used if classic = TRUE.

Author(s)

Peter Filzmoser, Valentin Todorov and Martin Maechler

See Also

covPlot which calls tolEllipsePlot() when desired. ellipsoidhull and predict.ellipsoid
from package cluster.

Examples

data(hbk)
hbk.x <- data.matrix(hbk[, 1:3])
mcd <- covMcd(hbk.x) # compute mcd in advance
## must be a 2-dimensional data set: take the first two columns :
tolEllipsePlot(hbk.x[,1:2])

## an "impressive" example:
data(telef)
tolEllipsePlot(telef, classic=TRUE)

toxicity Toxicity of Carboxylic Acids Data

Description

The aim of the experiment was to predict the toxicity of carboxylic acids on the basis of several
molecular descriptors.

Usage

data(toxicity, package="robustbase")

https://CRAN.R-project.org/package=cluster
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Format

A data frame with 38 observations on the following 10 variables which are attributes for carboxylic
acids:

toxicity aquatic toxicity, defined as log(IGC−1
50 ); typically the “response”.

logKow logKow, the partition coefficient

pKa pKa: the dissociation constant

ELUMO Energy of the lowest unoccupied molecular orbital

Ecarb Electrotopological state of the carboxylic group

Emet Electrotopological state of the methyl group

RM Molar refractivity

IR Refraction index

Ts Surface tension

P Polarizability

Source

The website accompanying the MMY-book: https://www.wiley.com/legacy/wileychi/robust_
statistics/

References

Maguna, F.P., Núñez, M.B., Okulik, N.B. and Castro, E.A. (2003) Improved QSAR analysis of the
toxicity of aliphatic carboxylic acids; Russian Journal of General Chemistry 73, 1792–1798.

Examples

data(toxicity)
summary(toxicity)
plot(toxicity)
plot(toxicity ~ pKa, data = toxicity)

## robustly scale the data (to scale 1) using Qn
(scQ.tox <- sapply(toxicity, Qn))
scTox <- scale(toxicity, center = FALSE, scale = scQ.tox)
csT <- covOGK(scTox, n.iter = 2,

sigmamu = s_Qn, weight.fn = hard.rejection)
as.dist(round(cov2cor(csT$cov), 2))

https://www.wiley.com/legacy/wileychi/robust_statistics/
https://www.wiley.com/legacy/wileychi/robust_statistics/
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tukeyPsi1 Tukey’s Bi-square Score (Psi) and "Chi" (Rho) Functions and Deriva-
tives

Description

These are deprecated, replaced by Mchi(*, psi="tukey"), Mpsi(*, psi="tukey")

tukeyPsi1() computes Tukey’s bi-square score (psi) function, its first derivative or it’s integral/“principal
function”. This is scaled such that ψ′(0) = 1, i.e., ψ(x) ≈ x around 0.

tukeyChi() computes Tukey’s bi-square loss function, chi(x) and its first two derivatives. Note
that in the general context of M -estimators, these loss functions are called ρ(rho)-functions.

Usage

tukeyPsi1(x, cc, deriv = 0)
tukeyChi (x, cc, deriv = 0)

Arguments

x numeric vector.

cc tuning constant

deriv integer in {−1, 0, 1, 2} specifying the order of the derivative; the default, deriv
= 0 computes the psi-, or chi- ("rho"-)function.

Value

a numeric vector of the same length as x.

Note

tukeyPsi1(x, d) and tukeyChi(x, d+1) are just re-scaled versions of each other (for d in -1:1),
i.e.,

χ(ν)(x, c) = (6/c2)ψ(ν−1)(x, c),

for ν = 0, 1, 2.

We use the name ‘tukeyPsi1’, because tukeyPsi is reserved for a future “Psi Function” class object,
see psiFunc.

Author(s)

Matias Salibian-Barrera, Martin Maechler and Andreas Ruckstuhl

See Also

lmrob and Mpsi; further anova.lmrob which needs the deriv = -1.



vaso 169

Examples

op <- par(mfrow = c(3,1), oma = c(0,0, 2, 0),
mgp = c(1.5, 0.6, 0), mar= .1+c(3,4,3,2))

x <- seq(-2.5, 2.5, length = 201)
cc <- 1.55 # as set by default in lmrob.control()
plot. <- function(...) { plot(...); abline(h=0,v=0, col="gray", lty=3)}
plot.(x, tukeyChi(x, cc), type = "l", col = 2)
plot.(x, tukeyChi(x, cc, deriv = 1), type = "l", col = 2)
plot.(x, tukeyChi(x, cc, deriv = 2), type = "l", col = 2)
mtext(sprintf("tukeyChi(x, c = %g, deriv), deriv = 0,1,2", cc),

outer = TRUE, font = par("font.main"), cex = par("cex.main"))
par(op)

op <- par(mfrow = c(3,1), oma = c(0,0, 2, 0),
mgp = c(1.5, 0.6, 0), mar= .1+c(3,4,1,1))

x <- seq(-5, 5, length = 201)
cc <- 4.69 # as set by default in lmrob.control()
plot. <- function(...) { plot(..., asp = 1); abline(h=0,v=0, col="gray", lty=3)}
plot.(x, tukeyPsi1(x, cc), type = "l", col = 2)
abline(0:1, lty = 3, col = "light blue")
plot.(x, tukeyPsi1(x, cc, deriv = -1), type = "l", col = 2)
plot.(x, tukeyPsi1(x, cc, deriv = 1), type = "l", col = 2); abline(h=1,lty=3)
mtext(sprintf("tukeyPsi1(x, c = %g, deriv), deriv = 0, -1, 1", cc),

outer = TRUE, font = par("font.main"), cex = par("cex.main"))
par(op)

vaso Vaso Constriction Skin Data Set

Description

Finney’s data on vaso constriction in the skin of the digits.

Usage

data(vaso, package="robustbase")

Format

A data frame with 39 observations on the following 3 variables.

Volume Inhaled volume of air

Rate Rate of inhalation

Y vector of 0 or 1 values.
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Details

The data taken from Finney (1947) were obtained in a carefully controlled study in human physiol-
ogy where a reflex “vaso constriction” may occur in the skin of the digits after taking a single deep
breath. The response y is the occurence (y = 1) or non-occurence (y = 0) of vaso constriction in the
skin of the digits of a subject after he or she inhaled a certain volume of air at a certain rate. The
responses of three subjects are available. The first contributed 9 responses, the second contributed
8 responses, and the third contributed 22 responses.

Although the data represent repeated measurements, an analysis that assumes independent observa-
tions may be applied, as claimed by Pregibon (1981).

Source

Finney, D.J. (1947) The estimation from individual records of the relationship between dose and
quantal response. Biometrika 34, 320–334

References

Atkinson, A.C. and Riani, M. (2000) Robust Diagnostic Regression Analysis, First Edition. New
York: Springer, Table A.23.

Fahrmeir, L. and Tutz, G. (2001) Multivariate Statistical Modelling Based on Generalized Linear
Models, Springer, Table 4.2.

Kuensch, H.R., Stefanski, A. and Carrol, R.J. (1989) Conditionally unbiased bounded influence
estimation in general regression models, with applications to generalized linear models, JASA 84,
460–466.

Pregibon, D. (1981) Logistic regression diagnostics, Annals of Statistics 9, 705–724.

Examples

data(vaso)
str(vaso)
pairs(vaso)

glmV <- glm(Y ~ log(Volume) + log(Rate), family=binomial, data=vaso)
summary(glmV)
## --> example(glmrob) showing classical & robust GLM

wagnerGrowth Wagner’s Hannover Employment Growth Data

Description

Wagner (1994) investigates the rate of employment growth (y) as function of percentage of people
engaged in producation activities (PA) and higher services (HS) and of the growth of these per-
centages (GPA, GHS) during three time periods in 21 geographical regions of the greater Hannover
area.
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Usage

data(wagnerGrowth, package="robustbase")

Format

A data frame with 21×3 = 63 observations (one per Region x Period) on the following 7 variables.

Region a factor with 21 levels, denoting the corresponding region in Hannover (conceptually a
“block factor”).

PA numeric: percent of people involved in production activities.

GPA growth of PA.

HS a numeric vector

GHS a numeric vector

y a numeric vector

Period a factor with levels 1:3, denoting the time period, 1 = 1979-1982, 2 = 1983-1988, 3 =
1989-1992.

Source

Hubert, M. and Rousseeuw, P. J. (1997). Robust regression with both continuous and binary regres-
sors, Journal of Statistical Planning and Inference 57, 153–163.

References

Wagner J. (1994). Regionale Beschäftigungsdynamik und höherwertige Produktionsdienste: Ergeb-
nisse für den Grossraum Hannover (1979-1992). Raumforschung und Raumordnung 52, 146–150.

Examples

data(wagnerGrowth)
## maybe
str(wagnerGrowth)

require(lattice)
(xyplot(y ~ Period | Region, data = wagnerGrowth,

main = "wagnerGrowth: 21 regions @ Hannover"))

(dotplot(y ~ reorder(Region,y,median), data = wagnerGrowth,
main = "wagnerGrowth",
xlab = "Region [ordered by median(y | Region) ]"))
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weights.lmrob Extract Robustness and Model Weights

Description

weights() extracts robustness weights or fitting (or prior) weights from a lmrob or glmrob object.

Usage

## S3 method for class 'lmrob'
weights(object, type = c("prior", "robustness", "working"), ...)

## S3 method for class 'glmrob'
weights(object, type = c("prior", "robustness", "working"), ...)

Arguments

object an object of class "lmrob" or "glmrob", typically the result of a call to lmrob,
or glmrob, respectively.

type the type of weights to be returned. Either "prior" (default), "robustness",
or "working"; working weights for lmrob objects are the product of the prior
(often all = 1) and the robustness weights. For glmrob objects, they currently
are the same as the "robustness" ones

... not used currently.

Details

The “prior weights” correspond to the weights specified using the “weights” argument when call-
ing lmrob. The “robustness weights” are the weights assigned by the M-estimator of regression,
ψ(ri/S)/(ri/S). The robust coefficient estimate then numericarlly corresponds to a weighted least
squares fit using the product of both types of weights as weights; these are also called “working
weights”, and are available as weights(<lmrob>, type = "working").

Value

Weights extracted from the object object.

Author(s)

Manuel Koller and Martin Maechler.

See Also

lmrob, glmrob and weights
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wgt.himedian Weighted Hi-Median

Description

Compute the weighted Hi-Median of x.

Usage

wgt.himedian(x, weights = rep(1, n))

Arguments

x numeric vector

weights numeric vector of weights; of the same length as x.

Note

this is rather a by-product of the code used in Sn and Qn. We currently plan to replace it with more
general weighted quantiles.

See Also

median; also wtd.quantile from package Hmisc.

Examples

x <- c(1:6, 20)
median(x) ## 4
stopifnot(all.equal(4, wgt.himedian(x)),

all.equal(6, wgt.himedian(x, c(rep(1,6), 5))))

wood Modified Data on Wood Specific Gravity

Description

The original data are from Draper and Smith (1966) and were used to determine the influence of
anatomical factors on wood specific gravity, with five explanatory variables and an intercept. These
data were contaminated by replacing a few observations with outliers.

Usage

data(wood, package="robustbase")

https://CRAN.R-project.org/package=Hmisc
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Format

A data frame with 20 observations on the following 6 variables.

x1, x2, x3, x4, x5 explanatory “anatomical” wood variables.

y wood specific gravity, the target variable.

Source

Draper and Smith (1966, p.227)

Peter J. Rousseeuw and Annick M. Leroy (1987) Robust Regression and Outlier Detection Wiley,
p.243, table 8.

Examples

data(wood)
plot(wood)
summary( lm.wood <- lm(y ~ ., data = wood))
summary(rlm.wood <- MASS::rlm(y ~ ., data = wood))
summary(lts.wood <- ltsReg(y ~ ., data = wood))

wood.x <- as.matrix(wood)[,1:5]
c_wood <- covMcd(wood.x)
c_wood

xtrData Extreme Data examples

Description

x30o50, called ‘’XX” in the thesis, has been a running case for which mc() had failed to converge.
A numeric vector of 50 values, 30 of which are very close to zero, specifically, their absolute values
are less than 1.5e-15.

The remaining 20 values (11 negative, 9 positive) have absolute values between 0.0022 and 1.66.

Usage

data(x30o50, package="robustbase")

Format

A summary is

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.66006 0.00000 0.00000 -0.04155 0.00000 1.29768

notably the 1st to 3rd quartiles are all very close to zero.
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Details

a good robust method will treat the 60% “almost zero” values as “good” data and all other as
outliers.

This is somewhat counter intuitive to typical human perception where the 30 almost-zero numbers
would be considered as inliers and the remaining 20 as “good” data.

The original mc() algorithm and also the amendments up to 2022 (robustbase versions before 0.95)
would fail to converge unless (in newer versions) eps1 was increased, e.g., only by a factor of 10,
to eps1 = 1e-13.

References

Lukas Graz (2021); unpublished BSc thesis, see mc.

Examples

data(x30o50)
## have 4 duplicated values :
table(dX <- duplicated(x30o50))

x30o50[dX] # 0 2.77e-17 4.16e-17 2.08e-16
sort(x30o50[dX]) * 2^56 # 0 2 3 15
## and they are c(0,2,3,15)*2^-56

table(sml <- abs(x30o50) < 1e-11)# 20 30
summary(x30o50[ sml]) # -1.082e-15 ... 1.499e-15 ; mean = 9.2e-19 ~~ 0
summary(x30o50[!sml])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.6601 -0.4689 -0.0550 -0.1039 0.3986 1.2977

op <- par(mfrow=c(3,1), mgp=c(1.5, .6, 0), mar = .3+c(2,3:1))
(Fn. <- ecdf(x30o50)) # <- only 46 knots (as have 4 duplications)
plot(Fn.) ## and zoom in (*drastically*) to around x=0 :
for(f in c(1e-13, 1.5e-15)) {

plot(Fn., xval=f*seq(-1,1, length.out = 1001), ylim=c(0,1), main="[zoomed in]")
if(f == 1e-13) rect(-1e-15,0, +1e-15, 1, col="thistle", border=1)
plot(Fn., add=TRUE)

}
par(op)

mcOld <- function(x, ..., doScale=TRUE) mc(x, doScale=doScale, c.huberize=Inf, ...)
try( mcOld(x30o50) ) # Error: .. not 'converged' in 100 iteration
mcOld(x30o50, eps1 = 1e-12) # -0.152
(mcX <- mc(x30o50)) # -7.10849e-13
stopifnot(exprs = {

all.equal(-7.10848988e-13, mcX, tol = 1e-9)
all.equal(mcX, mc(1e30*x30o50), tol = 4e-4) # not so close

})
table(sml <- abs(x30o50) < 1e-8)# 20 30
range(x30o50[sml])
x0o50 <- x30o50; x0o50[sml] <- 0
(mcX0 <- mc(x0o50))
stopifnot(exprs = {
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all.equal(-0.378445401788, mcX0, tol=1e-12)
all.equal(-0.099275805349, mc(x30o50[!sml]) -> mcL, tol=2e-11)
all.equal(mcL, mcOld(x30o50[!sml]))

})
## -- some instability also wrt c.huberize:
mcHubc <- function(dat, ...)

function(cc) vapply(cc, function(c) mc(dat, c.huberize = c, ...), -1.)
mcH50 <- mcHubc(x30o50)
head(cHs <- c(sort(outer(c(1, 2, 5), 10^(2:15))), Inf), 9)
mcXc <- mcH50(cHs)
plot( mcXc ~ cHs, type="b", log="x" , xlab=quote(c[huberize]))
plot((-mcXc) ~ cHs, type="b", log="xy", xlab=quote(c[huberize]))
## but for "regular" outlier skew data, there's no such dependency:
mcXcu <- mcHubc(cushny)(cHs)
stopifnot( abs(mcXcu - mcXcu[1]) < 1e-15)
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colSums, 34
colWeightedMedians, 34
COM (covComed), 35
comedian (covComed), 35
condroz, 34
confint, 159
cov.mcd, 39, 40
cov.rob, 43, 55
cov.wt, 39
covComed, 35, 144
covGK (covOGK), 41
covMcd, 36, 37, 43, 55, 60, 80, 94, 117, 121,

139, 144, 163, 166
covNNC, 40
covOGK, 40, 41, 136, 147, 152
covPlot, 120, 166
covPlot (plot.mcd), 120
CovSest, 139
CrohnD, 43
cushny, 44

data.frame, 9, 20, 22, 107
delivery, 45
dev.interactive, 119, 121
dim, 99, 150
dimnames, 38
double, 33
dummy.coef, 159

education, 46
eigen, 30
ellipsoidhull, 166
epilepsy, 47
estimethod, 49, 104
exAM, 49

factor, 6, 24, 80, 81, 87, 123, 152, 171
family, 54, 56
fitted, 94, 142, 159
fitted.nlrob (nlrob), 101
fitted.values, 93
foodstamp, 50
formula, 27, 54, 70, 91, 93, 102, 107
fullRank, 51
function, 36, 38, 54, 55, 71, 78, 92, 99, 112,

132, 138, 144, 160
functionX, 53
functionX-class, 52
functionXal, 53

functionXal-class, 53

glm, 54, 55, 142
glmrob, 20, 21, 26–28, 54, 59, 124, 126, 142,

157, 158, 172
glmrob..control, 58
glmrobBY.control (glmrob..control), 59
glmrobMqle.control, 55, 57
glmrobMqle.control (glmrob..control), 59
glmrobMT.control (glmrob..control), 59

h.alpha.n, 39, 60, 93
hampelPsi (psiFunc), 132
hard.rejection (covOGK), 41
hatvalues, 159
hatvalues.lmrob (summary.lmrob), 159
hbk, 61
heart, 62
huber, 64
huberize, 63, 95
huberM, 63, 64, 64
huberPsi (psiFunc), 132
hubers, 65

integer, 33
integrate, 130
invisible, 163
IQR, 10, 42

JDEoptim, 108, 109

kootenay, 66

lactic, 67
legend, 116
length, 39, 93
list, 6, 8, 30, 39, 54, 55, 59, 71, 72, 78, 81,

82, 84, 85, 87, 93, 108–110, 160
lm, 22, 54, 70, 160
lmc, 68
lmRob, 88
lmrob, 22, 23, 70, 75, 77, 78, 80, 82, 84, 85,

87–89, 94, 112, 118, 128, 129, 131,
149, 157, 159, 160, 168, 172

lmrob..D..fit, 74, 85
lmrob..M..fit, 75, 85
lmrob.control, 71–74, 76, 78, 84, 85, 87, 88,

99, 112, 113, 129, 130, 144, 153
lmrob.fit, 71, 73, 75–77, 84, 86, 87, 89
lmrob.lar, 85
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lmrob.M.S, 72, 73, 86, 153
lmrob.S, 71–73, 80, 84, 85, 88
logical, 63, 87, 88, 92, 103, 112, 160
los, 90
ltsPlot, 118
ltsPlot (plot.lts), 118
ltsReg, 60, 91, 144, 161, 162

mad, 42, 65, 137, 147, 152
mahalanobis, 38, 144
mammals, 18
match.call, 40
matplot, 116
matrix, 9, 30, 33, 139, 160
mc, 5–11, 64, 68, 69, 95, 175
Mchi, 131, 168
Mchi (Mpsi), 98
median, 136, 147, 151, 173
methods, 142
milk, 97
missing, 74
model.frame, 55, 72, 87, 103, 153
model.matrix, 87, 153, 159
model.matrix.default, 70, 92
model.matrix.lmrob (summary.lmrob), 159
Mpsi, 78, 82, 98, 131, 168
MrhoInf (Mpsi), 98
Mwgt, 150
Mwgt (Mpsi), 98

NA, 5, 33, 40, 42, 68, 95, 130, 136, 151
na.exclude, 70, 92
na.fail, 70, 92
na.omit, 54, 70, 92, 111
names, 33, 38, 99, 102, 107, 150
nlrob, 49, 99, 101, 107–110, 149, 164
nlrob-algorithms, 106
nlrob.algorithms, 103, 104, 110
nlrob.algorithms (nlrob-algorithms), 106
nlrob.CM (nlrob-algorithms), 106
nlrob.control, 103, 104, 108, 109
nlrob.MM, 49
nlrob.MM (nlrob-algorithms), 106
nlrob.mtl (nlrob-algorithms), 106
nlrob.tau (nlrob-algorithms), 106
nls, 102–104, 149
nls.control, 103
NOxEmissions, 17, 110
numeric, 33, 82, 131

offset, 71, 92
optim, 110
optimize, 130
options, 54, 70, 92, 95, 129, 158, 159
ordered, 152
outlierStats, 80, 111

panel.smooth, 117
par, 118, 119, 121
pension, 113
phosphor, 114
pilot, 115
plot, 93, 116, 134
plot,psi_func-method (plot-methods), 116
plot-methods, 116
plot.default, 166
plot.lm, 118
plot.lmrob, 73, 117
plot.lts, 118
plot.mcd, 120
points, 117
possum.mat (possumDiv), 122
possumDiv, 122
prcomp, 30
predict, 127, 159
predict.ellipsoid, 166
predict.glmrob, 57, 125
predict.lm, 126–128
predict.lmrob, 73, 125, 126, 159, 160
predict.nlrob (nlrob), 101
predict.nls, 104
princomp, 30
print, 129, 157–160, 163
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